冻土区工程场地岩石节理作为力学薄弱面对工程的安全和耐久性有很大影响,因此研究冻结岩石的力学性质对冻土区工程建设有重大的意义。为了研究冻结岩石节理的剪切力学性质,试验选定青海省G214国道姜路岭路段4组不同粗糙度的凝灰岩天然耦合节理面,在设定温度下冻结后进行直剪试验。试验成果表明:冻结岩石节理面的峰值剪切强度与法向应力呈正比,与张开度和粗糙度呈反比。张开度大于节理面最大起伏差时,节理面以脱离破坏为主,其峰值剪切强度由冰与节理接触面的黏结力决定;当张开度小于节理面最大起伏差时,在较小法向应力下以冰层剪断破坏为主,在较大的法向应力下,冰层的剪断与节理面凸起的剪断同时存在,其峰值剪切强度由冰和节理面的剪切强度共同决定。研究推导出各破坏形式下的冻岩节理面峰值剪切强度准则,对分析岩石的边坡稳定性起着十分重要的作用。
Abstract
In permafrost region, rock joint as a mechanical weakness has great influence on the safety and durability of engineering projects. Studying the mechanical properties of frozen rock is of great significance for engineering construction in permafrost regions. To investigate the shear mechanical performance of frozen rock joints, four sets of natural joint surfaces of tuff collected from G214 National Highway in Qinghai Province were selected for direct shear test after being frozen at given temperature. Results show that the peak strength of the frozen rock joint is proportional to normal stress, and is inversely proportional to opening degree and roughness. When the opening of joint surface is greater than the maximum fluctuation of joint, the joint surface is dominated by disconnection failure mode, and the peak shear strength is controlled by adhesive force between ice and contact surface; when the opening of joint surface is smaller than the maximum fluctuation, ice shearing failure is the dominant failure mode under small normal stress; while under large normal stress, shearing failure of ice and rock both exist, and the peak shear strength is determined by the shear strength of both ice and rock joint. Furthermore, the peak shear strength criteria for frozen rock joints with various failure modes were derived.
关键词
当卡水电站 /
局部冲刷 /
动网格技术 /
VOF /
剪切应力 /
输沙率 /
冲深及形态
Key words
Dangka hydropower station /
local scour /
dynamic mesh /
VOF /
shear stress /
sediment transport rate /
depth and topography
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PATTON F D. Multiple Modes of Shear Failure in Rock[C]∥International Society for Rock Mechanics and Rock Engineering, 1st ISRM Congress, Lisbon, Portugal, September 25th-October 1st,1966:509-513.
[2] BARTON N R. Review of a New Shear-strength Criterion for Rock Joints [J]. Engineering Geology,1973, 7(4): 287-332.
[3] ZHAO J. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):179-185.
[4] ZHAO J. Joint Surface Matching and Shear Strength Part A: Joint Matching Coefficient(JMC)[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):173-178.
[5] 王 刚,张学朋,蒋宇静,等.一种考虑剪切速率的粗糙结构面剪切强度准则[J].岩土工程学报,2015,37(8):1399-1404.
[6] GRASSELLI G. Shear Strength of Rock Joints Based on Quantified Surface Description[D]. Switzerland: Swiss Federal Institute of Technology, 2001.
[7]GRASSELLI G, EGGER P. Constitutive Law for the Shear Strength of Rock Joints Based on Three-dimensional Surface Parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40.
[8]GRASSELLI G. Manuel Rocha Medal Recipient Shear Strength of Rock Joints Based on Quantified Surface Description [J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295-314.
[9] 孙辅庭,佘成学,万利台,等.基于三维形貌特征的岩石节理峰值剪切强度准则研究[J].岩土工程学报,2014,36(3):529-536.
[10]孙辅庭,佘成学,万利台. 充填水泥浆岩石节理峰值剪切强度模型[J]. 岩石力学与工程学报,2014,33(12):2481-2489.
[11]唐志成,夏才初,宋英龙.粗糙节理的峰值剪切强度准则[J].岩土工程学报,2013,35(3):571-577.
[12]罗天一,宋轶充,张丽敏,等.人工淡水冰的单轴压缩强度试验技术[J].工程与试验,2008,(4):24-26,38.
[13]张丽敏,李志军,贾 青,等.人工淡水冰单轴压缩强度试验研究[J].水利学报,2009,40(11):1392-1396.
[14]贾 青,李志军,韩红卫,等.水库淡水冰剪切强度试验研究[J].数学的实践与认识,2015,45(5):132-137.
[15]陈世江,朱万成,王创业,等.考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J].岩石力学与工程学报,2016,35(10): 2013-2021.
[16]王水林,郭明伟,王万军,等.节理面剪切应力-切向位移曲线峰值后区特性的初步研究[J].岩石力学与工程学报,2016,35(增2): 3805-3812.
[17]唐 珊.表面特性对冰粘附强度影响的研究[D].广州:广州大学,2014.
[18]刘 波,刘 念,李东阳,等.含冰软弱面的冻结裂隙红砂岩的强度试验[J].煤炭学报,2016,41(4):843-849.
基金
国家自然科学青年基金项目(41502270,41502322);吉林省科技发展计划项目(20150520076JH);中国科学院冻土工程国家重点实验室开放基金项目(SKLFSE201506)