注入初期盾构壁后注浆体的三轴试验研究

陈喜坤,朱 伟,王 睿

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (4) : 140-143.

PDF(1609 KB)
PDF(1609 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (4) : 140-143. DOI: 10.11988/ckyyb.20150494
水工结构与材料

注入初期盾构壁后注浆体的三轴试验研究

  • 陈喜坤1,朱 伟2,王 睿2
作者信息 +

Experimental Study on the Triaxial Test of the Shield BackfillGrouting Material at Initial Stage

  • CHEN Xi-kun1, ZHU Wei2, WANG Rui2
Author information +
文章历史 +

摘要

壁后注浆体注入初期的变形及力学性质的变化直接影响到土体应力释放、地面沉降以及管片的后期受力情况。基于非自立性材料三轴试验方法,以工程常用的硬性浆和惰性浆为研究对象,开展了三轴固结不排水剪切试验。结果表明高围压有助于浆液排水固结,且浆液最终体应变也随着围压增加而增大;浆液在不排水条件下剪切过程呈现出应变硬化性,体积先收缩,随后呈现出明显的剪胀特性。在满足变形及施工要求的前提下,适当提高注浆压力及采用水胶比较小的浆液,有利于保证注浆体的施工质量。

Abstract

Deformation and mechanical properties of backfill grouting material directly affect soil stress release, ground subsidence and late stress situation of segment lining. Based on triaxial test method of non-independent material, we take the rigid slurry and inert slurry as research objects, carrying out consolidated non-drained triaxial shear test. Results show that, 1) high confining pressure contributes to the consolidation and drainage of the slurry, and the ultimate volumetric strain of the slurry increase with confining pressure; 2) in the shearing process on the non-drained condition, slurry shows tendency of strain hardening, and the volume shrinks first, then with obvious shear dilatation. On the premise of deformation and construction requirements, we can suitably increase grouting pressure and use slurry with smaller water-glue ratio to ensure the construction quality of grouting body.

关键词

盾构 / 壁后注浆 / 三轴试验 / 剪切应力 / 孔压消散 / 体应变

Key words

shield / backfill grouting / triaxial test / shear stress / pore pressure dissipation / volume strain

引用本文

导出引用
陈喜坤,朱 伟,王 睿. 注入初期盾构壁后注浆体的三轴试验研究[J]. 长江科学院院报. 2017, 34(4): 140-143 https://doi.org/10.11988/ckyyb.20150494
CHEN Xi-kun, ZHU Wei, WANG Rui. Experimental Study on the Triaxial Test of the Shield BackfillGrouting Material at Initial Stage[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(4): 140-143 https://doi.org/10.11988/ckyyb.20150494
中图分类号: U452   

参考文献

[1] 孙 闯, 张建俊, 刘家顺, 等. 盾构隧道壁后注浆压力对地表沉降的影响分析[J]. 长江科学院院报, 2012, 29(11): 68-72.
[2] 王 杰,杜嘉鸿.岩土注浆技术的理论探讨[J]. 长江科学院院报, 2000, 17(6): 82-86.
[3] 范昭平, 韩月旺, 方忠强. 盾构壁后注浆压力分布计算模型[J]. 公路交通科技, 2011,28 (3): 95-100.
[4] 李晓鄂, 王树清. 高压喷射注浆固结体性能研究[J]. 长江科学院院报, 2002, 19(增1): 68-70.
[5]MCGILLIVRAY R T. Design of Grouting Procedures to Prevent Ground Subsidence over Shallow Tunnels[C]∥American Society of Civil Engineers.Proceedings of the Third International Conference on Grouting and Ground Treatment,New Orleans, Louisiana ,February 10-12, 2003: 1557-1569.
[6] 王树清, 蔡胜华, 蒋硕忠. 盾构法隧道施工同步注浆材料研究[J]. 长江科学院院报, 1998, 15(4): 29-31,39.
[7] BEZUIJEN A, TALMON A M, KAALBERG F J, et al. Field Measurements of Grout Pressures During Tunnelling of the Sophia Rail Tunnel[J]. Soils and Foundations, 2004, 44(1): 39-48.
[8] 张海涛. 盾构同步注浆材料试验及隧道上浮控制技术[D]. 上海: 同济大学, 2007.
[9] 韩月旺, 钟小春, 虞兴福. 盾构壁后注浆体变形及压力消散特性试验研究[J]. 地下空间与工程学报, 2007, (6): 1142-1147,1175.
[10]朱建春, 李 乐, 杜文库. 北京地铁盾构同步注浆及其材料研究[J]. 建筑机械化, 2004, (11): 26-29.
[11]罗云峰, 区 希, 张厚美, 等. 地铁隧道盾构法同步注浆用水泥砂浆的试验研究[J]. 混凝土, 2004, (8): 72-75.
[12]ZHU W, WANG R, ZUO J, et al. Improved Isotropically Consolidated Undrained Triaxial Test Method for Non-Self-Supporting Materials[J]. Geotechnical Testing Journal, 2014, 37(4): 1-11.

基金

国家重点基础研究发展计划(973)项目(2015CB057803);国家自然科学基金项目(51408191);江苏省疏浚与泥处理利用国家工程技术研究中心培育点项目(BM2013013)

PDF(1609 KB)

Accesses

Citation

Detail

段落导航
相关文章

/