工业废渣配合水泥用于土体固化能有效增加土体强度,提高废渣利用率,具有明显的经济效益和环保效益。将粉煤灰-脱硫石膏-水泥三元凝胶体系运用于黄土固化,使用CaOH2和NaOH作为活性激发剂形成复合黄土固化剂,通过正交试验以无侧限抗压强度为标准判断固化剂各组分对强度的影响程度,并选取最优掺入比。使用最优掺入比研究了黄土含水率、水灰比和早强剂对复合固化黄土强度的影响,并与水泥黄土进行比较。结果表明:复合固化黄土中后期强度增长率高,90 d强度达到6.85 MPa,相当于20%水泥掺入比的水泥黄土90 d的强度;复合固化黄土的含水率在20%左右时各龄期强度最高。三乙醇胺和水玻璃可用作复合固化黄土早强剂。XRD衍射图谱和SEM微观结构印证了复合固化黄土固化原理和强度规律。
Abstract
Industrial waste residue combined with cement is of remarkable economic and environmental benefits in solidifying soil by enhancing soil strength and improving residue utilization. A ternary gel system composing fly ash, desulfurized gypsum, and cement is applied to solidify loess in this research. CaOH2 and NaOH are selected as activators of the composite curing agent. Through orthogonal experiments, the influence degree of each component of the composite curing agent on unconfined compressive strength is examined, and the optimum mixing ratio is determined. On this basis, the impacts of loess water content, water-cement ratio, and early strength agent on the strength of the solidified loess are investigated and compared with those of cement-improved loess. Result shows that the strength growth rate solidified by the composite curing agent in middle and late age is higher than that of cement-improved loess, with the 90 day strength amounting to 6.85 MPa, equivalent to that of cement-improved loess with 20% cement mixing ratio. When the water content of composite solidified loess is about 20%, the strength reaches to the maximum at all ages. Triethanolamine and sodium silicate can be used as early strength agent for the composite solidified loess. In addition, XRD diffraction pattern and SEM microstructure verified the curing principle and strength law.
关键词
粉煤灰 /
脱硫石膏 /
复合固化黄土 /
无侧限抗压强度 /
正交试验 /
XRD试验 /
SEM微观结构
Key words
fly ash /
desulfurized gypsum /
composite solidified loess /
unconfined compressive strength /
orthogonal experiment /
XRD test /
SEM microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王贤昆,庞建勇,王 强. 复合水泥土无侧限抗压强度正交试验研究[J]. 长江科学院院报,2015,32(12):72-75.
[2] 李 东. 大体积混凝土施工配合比中粉煤灰最优掺量[J].西安建筑科技大学学报,1998,30(3):284-286.
[3] 李绍彬,潘志华,胡平淳,等. 水泥熟料-粉煤灰体系中粉煤灰活性的复合激发研究[J]. 硅酸盐通报,2011,30(4): 854-859.
[4] 栾晓风,潘志华,王冬冬. 粉煤灰水泥体系中粉煤灰活性的化学激发[J]. 硅酸盐通报,2010,29(4):757-761.
[5] 王 智,郑洪伟,钱觉时,等. 硫酸盐对粉煤灰活性激发的比较[J]. 粉煤灰综合利用,1999,(3):15-18.
[6] 陈若莉. 激发剂对粉煤灰活性的激发作用[J]. 陕西科技大学学报(自然科学版),2010,28(5):76-79.
[7] 叶东忠,杜育红,林春莺. 三乙醇胺与硫酸钠复合对粉煤灰-水泥体系性能与结构的影响[J]. 福州大学学报(自然科学版),2012,40(3):393-398,411.
[8] 柯国军,杨晓峰,彭 红,等.化学激发粉煤灰活性机理研究进展 [J].煤炭学报,2005,30(3):366-370.
[9] 陈 瑜,高英力,王盛铭. 粉煤灰-脱硫石膏双掺砂浆试验研究与应用[J].长沙理工大学学报(自然科学版),2010,7(2):48-52.
[10]高英力,陈 瑜,王 迪,等. 脱硫石膏-粉煤灰活性掺合料设计及水化特性[J]. 四川大学学报(工程科学版),2010,42(2):225-231.
[11]张 翔,何廷树,何 娟. 硅酸盐水泥-粉煤灰-脱硫石膏复合材料的性能研究[J]. 硅酸盐通报,2014,33(4):796-799.
[12]郭晓潞,施惠生. 脱硫石膏粉煤灰地聚合物抗压强度和反应机理[J]. 同济大学学报(自然科学版),2012,40(4):573-577.
[13]吴 蓬,吕宪俊,梁志强,等. 混凝土早强剂的作用机理及应用现状[J]. 金属矿山,2014,(12):20-25.
[14]王 露,刘数华. 钙矾石相的研究综述[J]. 混凝土,2013,(8):83-86,90.