为了解饱和混凝土材料的动态特性,开展了大尺寸饱和混凝土在不同应变速率下的单轴压缩试验。试验在大型多功能液压静动力三轴仪上进行,采用300 mm×600 mm圆柱体混凝土试件, 得到了大尺寸饱和混凝土的动态力学性能参数,并根据破坏形态分析了其破坏机理。试验结果表明:峰值应力、吸能能力随着应变速率增大而增加,峰值应变、弹性模量随着应变速率的增大整体上增加。根据应力-应变关系的特点,建立了峰值应力前服从Weibull统计分布,峰值应力后服从Lognormal统计分布的损伤本构模型。混凝土破坏形态表现为多个共轭斜面的剪切破坏,根据试件破坏后裂缝开展情况,解释了混凝土破坏剥落原因,并从材料组成、吸能能力等方面分析了其破坏机理。
Abstract
In order to study the dynamic properties of large size saturated concrete, we carried out uniaxial compression tests under different strain rates. By using large-scale multi-function static and dynamic triaxial test machine, we prepared cylindrical concrete specimens with diameter 300 mm and length 600 mm and obtained dynamic mechanical properties of the concretes. Then, we analyzed the failure mechanism according to failure shape. Test results show that peak stress and energy absorption capacity increased with the increase of the loading rate, so did peak strain and elastic modulus. On the basis of stress-strain relation, we established a damage constitutive model of concrete. In the model, stress-strain relation conformed with Weibull statistical distribution before peak stress; while after peak stress, the relation conformed with Lognormal statistical distribution. Shear failure at a few conjugated inclined planes were observed . According to crack expansion after specimen failure, we explained the causes of spalling failure of concrete and analyzed the failure mechanism in aspects of material composition and energy absorption ability.
关键词
大尺寸 /
饱和混凝土 /
动态性能 /
本构模型 /
破坏机理
Key words
large size /
saturated concrete /
dynamic behavior /
constitutive model /
failure mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BARTLETT F M, MACGREGOR J G. Effect of Moisture Condition on Concrete Core Strengths [J]. ACI Materials Journal, 1994, 91(3):227-236.
[2] ROSS C A, JEROME D M, TEDESCO J W, et al. Moisture and Strain Rate Effects on Concrete Strength[J]. ACI Materials Journal, 1996, 93(3): 293-300.
[3] 王海龙,李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报,2006,37(8): 958-962.
[4] ZHOU Ji-kai, DING Ning. Moisture Effect on Compressive Behavior of Concrete under Dynamic Loading[J]. Journal of Central South University, 2014,21(12):4714-4722.
[5] 彭 刚,王乾峰,梁春华. 有压孔隙水环境中的混凝土动态抗压性能研究[J]. 土木工程学报,2015,48(1):11-18.
[6] 王海龙,李庆斌.不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J]. 水力发电学报,2007,26(1):84-89.
[7] 闫东明. 混凝土动态力学性能试验与理论研究[D]. 大连:大连理工大学, 2006.
[8] 白卫峰,陈健云,范书立. 饱和混凝土单轴拉伸动态统计损伤本构模型[J]. 防灾减灾工程学报,2009,29(1):16-21.
[9] 翁其能,吴秉其,秦 伟. 地下结构混凝土渗透损伤研究综述[J]. 材料导报,2014,28(16):130-134.
[10]张永亮,朱大勇,姚华彦,等.干燥和饱和状态下混凝土动静态压缩性能试验研究及其本构关系[J]. 建筑结构,2015,45(12):23-27.
[11]关 虓,牛荻涛,王家滨,等. 基于Weibull强度理论的混凝土冻融损伤本构模型研究[J]. 混凝土,2015,(5):5-9.
[12]杜修力,韩亚强,金 浏,等. 骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J]. 水利学报,2015,46(6):631-639.
[13]王春来,徐必根,李庶林,等.单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学,2006,27(1):151-154.
[14]潘青松,彭 刚,胡伟华,等. Weibull统计理论的参数对混凝土全曲线模型的影响[J]. 长江科学院院报,2015,32(4):120-124.
[15]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,2013.
基金
国家自然科学基金项目(51279092);三峡大学科研创新项目(CX2015025)