考虑非饱和土基质吸力-回弹指数相关性的弹塑性本构模型及有限元实现

程昊, 熊大生, 唐辉明, 张抒

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (7) : 132-138.

PDF(6418 KB)
PDF(6418 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (7) : 132-138. DOI: 10.11988/ckyyb.20230149
岩土工程

考虑非饱和土基质吸力-回弹指数相关性的弹塑性本构模型及有限元实现

  • 程昊1, 熊大生1, 唐辉明2, 张抒2
作者信息 +

Swelling Index and Matric Suction Relations for Unsaturated Soil Elasto-plastic Constitutive Model in FEM

  • CHENG Hao1, XIONG Da-sheng1, TANG Hui-ming2, ZHANG Shu2
Author information +
文章历史 +

摘要

非饱和土压缩指数受基质吸力影响明显,回弹指数是土的临界状态本构模型中的重要变形参数。但在本构模型理论研究中,回弹指数随基质吸力的变化影响往往被忽略。为解决这一矛盾,以杭州地区重塑粉土为试样,使用GDS非饱和直剪系统的竖向加载功能,对试样进行50、100、200 kPa 3种定吸力条件下一维固结回弹试验,获取不同基质吸力非饱和回弹指数κ(s),并拟合得到κ(s)函数关系,对比已有试验研究,验证了拟合结果的合理性。进而将κ(s)表达式引入非饱和土扩展剑桥弹塑性本构模型,形成一种考虑回弹指数随基质吸力变化的非饱和土弹塑性本构模型。应用子增量步显示积分算法将该模型编辑成ABAQUS有限元UMAT子程序,最后基于ABAQUS有限元平台结合自编UMAT子程序进行固结回弹数值试验,模拟实际试验过程,对比两者试验结果,验证了该UMAT子程序的正确性。实现了一种考虑回弹指数随基质吸力变化的非饱和土弹塑性本构模型的数值化,为其进一步应用建立基础。

Abstract

The swelling index, a crucial parameter for soil deformation, holds significant importance in the critical state elasto-plastic constitutive model. Unlike the compressibility index, which has been extensively reported in literature, the variation of the swelling index with matric suction has often been overlooked in theoretical studies of unsaturated soil constitutive models. To address this gap, oedometer tests were conducted on remolded silt specimens sourced from Hangzhou, China. Under suction-controlled conditions, utilizing an oedometer equipped with a GDS direct shear chamber, the experimental program comprised three tests conducted at matric suction levels of 50, 100, and 200 kPa. The relationship between matric suction and the swelling index, denoted as κ(s), was established and fitted. Validation was performed by comparison with previous experimental studies. Furthermore, this κ(s) relationship was incorporated into an unsaturated soil-extended Cam-clay elasto-plastic model. An explicit integration with a substepping error control algorithm was implemented within the ABAQUS finite element method (FEM) UMAT subroutine. The numerical modeling results of the silt oedometer tests, coupled with the UMAT subroutine, exhibited high agreement with laboratory tests.

关键词

非饱和土 / 基质吸力 / 回弹指数 / 本构模型 / 有限元模型

Key words

unsaturated soil / matric suction / swelling index / constitutive model / finite element method

引用本文

导出引用
程昊, 熊大生, 唐辉明, 张抒. 考虑非饱和土基质吸力-回弹指数相关性的弹塑性本构模型及有限元实现[J]. 长江科学院院报. 2024, 41(7): 132-138 https://doi.org/10.11988/ckyyb.20230149
CHENG Hao, XIONG Da-sheng, TANG Hui-ming, ZHANG Shu. Swelling Index and Matric Suction Relations for Unsaturated Soil Elasto-plastic Constitutive Model in FEM[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(7): 132-138 https://doi.org/10.11988/ckyyb.20230149
中图分类号: TU43   

参考文献

[1] ALONSO E E, GENS A, JOSA A. A Constitutive Model for Partially Saturated Soils[J]. Géotechnique, 1990, 40(3): 405-430.
[2] JOSA A, BALMACEDA A, GENS A,et al. An Elastoplastic Model For Partially Saturated Soils Exhibiting a Maximum of Collapse[C]//Proceedings of the 3rd International Conference on Computational Plasticity. Barcelona, Spain. April 6-10, 1992: 815-826.
[3] WHEELER S J,SHARMA R S,BUISSON M S R.Coupling of Hydraulic Hysteresis and Stress-strain Behaviour in Unsaturated Soils[J].Geotechnique,2003,53(1): 41-54.
[4] TAMAGNINI R. An Extended Cam-clay Model for Unsaturated Soils with Hydraulic Hysteresis[J]. Géotechnique, 2004, 54(3): 223-228.
[5] TAMAGNINI R,DE GENNARO V.Implicit Integration of an Extended Cam-clay Model for Unsaturated Soils[C]//Unsaturated Soils. Advances in Geo-Engineering. Durham,United Kingdom:Taylor & Francis,2008:713-719.
[6] 程 昊, 唐辉明, 吴 琼, 等. 一种考虑水力滞回效应的非饱和土弹塑性扩展剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686, 694. (CHENG Hao, TANG Hui-ming, WU Qiong, et al. An Elasto-plasticity Extended Cam-clay Model for Unsaturated Soils Using Explicit Integration Algorithm in FEM with Hydraulic Hysteresis[J]. Rock and Soil Mechanics, 2020, 41(2): 676-686, 694.(in Chinese))
[7] ZHANG F, IKARIYA T. A New Model for Unsaturated Soil Using Skeleton Stress and Degree of Saturation as State Variables[J]. Soils and Foundations, 2011, 51(1): 67-81.
[8] FUTAI M M, ALMEIDA M S S. An Experimental Investigation of the Mechanical Behaviour of an Unsaturated Gneiss Residual Soil[J]. Géotechnique, 2005, 55(3): 201-213.
[9] ARAKI M S, CARVALHO J C. Study of a Collapsible Porous Soil of Brazil[C]// Proceedings of the 1st International Conference on Unsaturated Soils. Paris, France. September 6-8, 1995:17-21.
[10]WHEELER S J,SIVAKUMAR V.An Elasto-plastic Critical State Framework for Unsaturated Soil[J].Géotechnique, 1995, 45(1): 35-53.
[11]MACHADO S L, VILAR O M. Deformations Induced by the Changes in Suction in a Compacted Soil[C]// Proceedings of the 3rd Brazilian Symposium on Unsaturated Soils. Rio de Janeiro, 1997: 301-310. (in Portuguese))
[12]CHIU C F, NG C W W. A State-dependent Elasto-plastic Model for Saturated and Unsaturated Soils[J]. Géotechnique, 2003, 53(9): 809-829.
[13]MAATOUK A, LEROUEIL S, LA ROCHELLE P. Yielding and Critical State of a Collapsible Unsaturated Silty Soil[J]. Géotechnique, 1995, 45(3): 465-477.
[14]THU T M, RAHARDJO H, LEONG E C. Soil-water Characteristic Curve and Consolidation Behavior for a Compacted Silt[J]. Canadian Geotechnical Journal, 2007, 44(3): 266-275.
[15]汪东林, 栾茂田, 杨 庆. 非饱和重塑低液限黏土体积变化特性试验研究[J]. 水利学报, 2008, 39(3): 367-372, 379. (WANG Dong-lin, LUAN Mao-tian, YANG Qing. Experimental Research on Volume Change of Unsaturated Remolded Clay with Low Liquid-limit[J]. Journal of Hydraulic Engineering, 2008, 39(3): 367-372, 379.(in Chinese))
[16]RAMPINO C, MANCUSO C, VINALE F. Experimental Behaviour and Modelling of an Unsaturated Compacted Soil[J]. Canadian Geotechnical Journal, 2000, 37(4): 748-763.
[17]叶为民, 朱悦铭, 陈 宝, 等. 上海软土非饱和压缩特征[J]. 同济大学学报(自然科学版), 2011, 39(10): 1458-1462. (YE Wei-min, ZHU Yue-ming, CHEN Bao, et al. Compressibility of Shanghai Unsaturated Soft Soil[J]. Journal of Tongji University (Natural Science), 2011, 39(10): 1458-1462.(in Chinese))
[18]孙德安,陈 波,周 科.重塑上海软土的压缩和剪切变形特性试验研究[J].岩土力学,2010,31(5):1389-1394.(SUN De-an, CHEN Bo, ZHOU Ke. Experimental Study of Compression and Shear Deformation Characteristics of Remolded Shanghai Soft Clay[J]. Rock and Soil Mechanics, 2010, 31(5): 1389-1394.(in Chinese))
[19]刘律智, 杨 涛, 马鹏真. 广州软土的压缩特性与修正剑桥模型参数λκ[J]. 水利与建筑工程学报, 2016, 14(1): 45-48. (LIU Lü-zhi,YANG Tao,MA Peng-zhen. Compression Characteristics and Modified Cam-clay Model Parameter λ and κ of Guangzhou Soft Soils[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(1): 45-48.(in Chinese))
[20]DEV K L, PILLAI R J, ROBINSON R G. Estimation of Critical State Parameters from One-dimensional Consolidation and Triaxial Compression Tests[J]. Indian Geotechnical Journal, 2013, 43(3): 229-237.
[21]费 康, 彭 劼. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2017: 92. (FEI Kang, PENG Jie. Detailed Explanation of ABAQUS Geotechnical Engineering Example[M]. Beijing: Posts & Telecom Press, 2017: 92.(in Chinese))
[22]ENRICO S. Experimental and Numerical Investigations of Face Stability of Shallow Tunnels in Partially Saturated Soil[D]. Vienna: University of Natural Resources and Life Sciences, 2014.

基金

中铁第四勘察设计院集团有限公司科研课题(2020k158);湖北巴东地质灾害国家野外科学观测研究站开放基金课题(BNORSG202213)

PDF(6418 KB)

Accesses

Citation

Detail

段落导航
相关文章

/