为了研究汶川地震中一处双级加筋土挡墙的破坏机理,利用FLAC3D有限差分软件进行动力分析;在此基础上,研究平台宽度的变化对双级加筋土挡墙抗震性能的影响。数值结果表明:汶川地震中,平台位置产生过大的水平位移和竖向位移是该双级加筋土挡墙发生局部破坏的原因;地震作用下,墙顶处水平位移最大值与不同的平台宽度之间呈非线性关系,上级挡墙的水平位移最大值随平台宽度的增加先减小后增大,而下级挡墙的水平位移最大值则随平台宽度的增加先增大后减小;增大平台宽度可以减小下级挡墙面板附近填土的竖向位移;在低烈度时,平台宽度对峰值加速度(Peak Ground Acceleration, PGA)放大系数影响较小;在高烈度时,平台宽度对PGA放大系数影响较大。因此通过设计合理的平台宽度能提高双级加筋土挡墙抗震性能。
Abstract
Dynamic analysis was conducted with FLAC3D to study the failure mechanism of a two-stage reinforced soil-retaining wall in Wenchuan earthquake. On this basis, the effect of platform width on the seismic performance of the wall was researched. The numerical results reveal that too large horizontal and vertical displacement at the platform is the cause of local failure of the wall. Under seismic action, the maximum horizontal displacement at the top of the wall is in a non-linear relationship with the platform width, and the maximum horizontal displacement of the upper wall firstly decreases with the increase of platform width and then increases; while the horizontal displacement of the lower wall firstly grows with the increase of platform width and then decreases. Vertical displacement of backfill near by the lower wall panel could be reduced by increasing the platform width. Moreover, under low seismic intensity, platform width has no apparent effect on the magnification of PGA (Peak Ground Acceleration) but in the opposite under high intensity. Therefore, the seismic performance of two-stage reinforced soil retaining wall could be improved by designing a reasonable platform width.
关键词
双级加筋土挡墙 /
汶川地震 /
平台宽度 /
抗震性能 /
FLAC3D
Key words
two-stage reinforced soil retaining wall /
Wenchuan earthquake /
platform width /
seismic performance /
FLAC3D
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TATSUOKA F, TATEYAMA M, MOHRI Y, et al. Remedial Treatment of Soil Structures Using Geosynthetic-reinforcing Technology[J]. Geotextiles & Geomembranes, 2007, 25(4): 204-220.
[2] YASUYUKI N. Shaking Tests of Reinforced Earth Wall[C]∥Proceedings of the International Offshore and Polar Engineering Conference. Osaka, Japan, June 19-24, 2005: 410-414.
[3] 西南交通大学研究组. 国道G213加筋土结构震害统计报告[R]. 成都:西南交通大学研究组,2009.
[4] JTJ 015—91,公路加筋土工程设计规范[S]. 北京:中国建筑工业出版社,1991.
[5] 周世良, 何光春, 汪承志, 等. 台阶式加筋土挡墙模型试验研究[J]. 岩土工程学报, 2007, 29(1):152-156.
[6] 丁钧巍, 何光春, 汪承志, 等. 台阶格栅加筋土墙土压力的模型试验研究[J]. 岩石力学与工程学报, 2007,26(增2): 4292-4298.
[7] 杨广庆, 蔡 英. 多级台阶式加筋土挡土墙试验研究[J]. 岩土工程学报, 2000,22(2): 254-257.
[8] 杨广庆, 周亦涛, 熊保林,等. 刚性基础上双级土工格栅加筋土挡墙性状研究[J]. 水利学报,2012,43(12):1500-1506.
[9] 雷胜友. 台阶式加筋土挡墙的原型试验研究[J]. 工程地质学报, 2001,9(1):44-50.
[10]王 祥, 徐林荣. 双级土工格栅加筋土挡墙的测试分析[J]. 岩土工程学报, 2003,25(2):220-224.
[11]莫介臻, 何光春, 汪承志,等. 台阶式格栅加筋挡墙现场试验及数值分析[J]. 土木工程学报, 2008,41(5):52-58.
[12]周亦涛, 梁小勇, 杨广庆,等. 多级加筋土复合式挡墙的现场试验[J]. 工业建筑, 2014,44(2):83-88.
[13]杨广庆. 台阶式加筋土挡土墙设计方法的研究[J]. 岩石力学与工程学报, 2004, 23(4):695-698.
[14]李广信. 土工合成材料构造物的抗震性能[J]. 世界地震工程, 2010, 26(14):31-36.
[15]陈 强, 杨长卫, 张建经,等. “5·12”汶川地震中高大加筋土挡墙破坏机理研究[J]. 铁道建筑, 2010,(9):73-77.
[16]杨 波, 凌天清, 张 强,等. 基于FLAC3D的土工格栅加筋土挡墙数值分析[J].水利水电科技进展, 2012, 32(增1):11-14.
[17]刘春玲, 祁生文, 童立强,等. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报, 2004, 23(16):2730-2733.
[18]Itasca Consulting Group, Inc. Fast Language Analysis of Continua in 3 Dimensions, Version 3.0, User’s Manual[K]. USA: Itasca Consulting Group, Inc., 2005.
[19]陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社, 2008.
[20]郭晓云. 汶川地震反应谱研究[D]. 哈尔滨:中国地震局工程力学研究所, 2011.
[21]GB 50011—2010,建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[22]言志信, 张刘平, 曹小红,等. 地震作用下顺层岩质边坡动力响应规律及变形机制研究[J]. 岩土工程学报, 2011, 33(增1):54-58.
[23]朱宏伟, 姚令侃, 张旭海. 两种加筋土挡墙的动力特性比较及抗震设计建议[J]. 岩土工程学报, 2012, 34(11):2072-2080.
[24]徐光兴, 姚令侃, 李朝红,等. 边坡地震动力响应规律及地震动参数影响研究[J]. 岩土工程学报, 2008, 30(6):918-923.
[25]徐光兴, 姚令侃, 高召宁,等. 边坡动力特性与动力响应的大型振动台模型试验研究[J]. 岩石力学与工程学报, 2008,27(3):624-632.
[26]莫介臻, 周世良, 何光春,等. 加筋土挡墙潜在破裂面模型试验研究[J]. 铁道学报, 2007, 29(6):69-73.
[27]周春儿, 何光春, 龙丽吉. 台阶式土工格栅加筋土挡墙结构优化设计[J]. 河海大学学报(自然科学版), 2008, 36(5):713-717.
[28]戴征杰, 褚景英, 陈丽丽,等. 台阶式加筋土挡墙验算的对比分析[J]. 长江科学院院报, 2014, 31(3):139-141.
[29]吕 鹏, 汤劲松, 刘 杰,等. 土工格栅加筋土挡墙土压力测试与有限元分析[J]. 长江科学院院报, 2014, 31(3):92-95.
[30]匡柯柯, 杨广庆. 地震荷载作用下路堤式加筋土挡墙结构力学特性数值分析[J]. 长江科学院院报, 2014, 31(3):87-91.
基金
中央高校基本科研业务费研究生科技创新基金(ZY20150310)