川中红层泥岩颗粒破碎分形特性

胡云鹏,冯文凯,谢吉尊,孙立军

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (3) : 115-118.

PDF(2034 KB)
PDF(2034 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (3) : 115-118. DOI: 10.11988/ckyyb.20150804
岩土工程

川中红层泥岩颗粒破碎分形特性

  • 胡云鹏1,冯文凯1,谢吉尊1,孙立军2
作者信息 +

Fractal Behavior of Crushed Red-bed Mudstone in Central Sichuan

  • HU Yun-peng1,FENG Wen-kai1,XIE Ji-zun1,SUN Li-jun2
Author information +
文章历史 +

摘要

红层泥岩填料中泥岩碎块石的含量直接影响压实后填筑体的流变、渗透、强度以及地基变形特性。通过配置不同含水率、不同粗细比的泥岩试样,开展红层泥岩击实后粒径的分布情况及其破碎率和分形维数的研究,探讨分形理论在该种岩土体中的规律和特性。结果表明,泥岩颗粒破碎后的粒径分布具有典型分形特征,分形维数区间分布在2.418~2.529。随着含水率的增加,红层泥岩的破碎率和分形维数均增加。当P5初始含量较大时,含水率对分形维数的增长影响较大,但初始粗颗粒的增多减缓了分形维数伴随含水率增加而上升的幅度。破碎率和分形维数均是随着含水率的增加而增大,且与P5初始含量成反比关系,两者具有一定的相关性,满足高斯公式的正态分布关系。

Abstract

The content of breakstone in red-bed mudstone has a direct influence on the rheological property, permeability, strength and subgrade deformation of the fillings after compaction. To investigate the fractal features of red-bed mudstone, we analyzed the particle size distribution, crushing rate, and fractal dimension of red-bed mudstone specimens of different moisture contents and coarse grain to fine grain ratios after compaction test. Results reveal that the particle size distribution of crushed mudstone is of typical fractal features, with the fractal dimension ranging between 2.418 and 2.529. With the increase of moisture content, the rate of crushing and the fractal dimension both increase correspondingly. When the initial content of P5 is relatively large, moisture content has a big influence on the growth of fractal dimension, but with the increase of initial coarse grain, the growth of fractal dimension slows down. Therefore we conclude that the rate of crushing and the fractal dimension have some correlation following the Gaussian normal distribution. They both increase with the increase of moisture content, and are in negative relationship with the initial content of P5.

关键词

红层泥岩 / 击实试验 / 颗粒破碎 / 破碎率 / 分形特征 / 正态分布

Key words

red-bed mudstone / compaction test / crushing of particles / rate of crushing / fractal features / normal distribution

引用本文

导出引用
胡云鹏,冯文凯,谢吉尊,孙立军. 川中红层泥岩颗粒破碎分形特性[J]. 长江科学院院报. 2017, 34(3): 115-118 https://doi.org/10.11988/ckyyb.20150804
HU Yun-peng,FENG Wen-kai,XIE Ji-zun,SUN Li-jun. Fractal Behavior of Crushed Red-bed Mudstone in Central Sichuan[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(3): 115-118 https://doi.org/10.11988/ckyyb.20150804
中图分类号: TU446   

参考文献

[1] 郭永春,谢 强,文江泉.我国红层分布特征及主要工程地质问题[J].水文地质工程地质,2007,34(6):67-71.
[2] 孙立军,冯文凯,吴 刚. 四川盆地红层区机场建设中的主要工程地质问题分析[J]. 工程勘察,2015,(1):11-15.
[3] 张国强,冯文凯,谢春庆,等. 风化裂隙水对高填方稳定性的影响评价[J]. 工程勘察, 2015, (4):1-6.
[4] 邵 磊,余 挺,迟世春. 堆石微裂缝扩展规律及其影响因素[J].长江科学院院报,2016,33(1):115-120.
[5] 刘汉龙,秦红玉,高玉峰,等.堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005,26(4):562-566.
[6] 石修松,程展林.堆石料颗粒破碎的分形特性[J].岩石力学与工程学报,2010,29(增2):3852-3857.
[7] 石修松,程展林.堆石料颗粒破碎的连续时间Markov链模型[J].长江科学院院报,2010,27(6):38-42,48.
[8] 傅 华,凌 华,蔡正银.粗颗粒土颗粒破碎影响因素试验研究[J].河海大学学报(自然科学版),2009,37(1):75-79.
[9] 赵晓菊,凌 华,傅 华,等.级配对堆石料颗粒破碎及力学特性的影响[J].水利与建筑工程学报,2013,11(4):175-178.
[10]苏 明.考虑颗粒破碎的粗粒料力学特性研究综述[J].长江科学院院报,2015,32(5):82-88.
[11]杜 俊,侯克鹏,梁 维,等.粗粒土压实特性及颗粒破碎分形特征试验研究[J].岩土力学,2013,34(增1):155-161.
[12]傅 华,韩华强,凌 华.堆石料级配缩尺方法对其室内试验结果的影响[J].岩土力学,2012,33(9):2645-2649.
[13]MANDELBROT B B. The Fractal Geometry of Nature[M]. New York:W.H.Freeman and Company,1983.[14]谢和平.岩土介质的分形孔隙和分形粒子[J].力学进展,1993,23(2):145-164.
[15]HARDIN B O.Crushing of Soil Particles[J].Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
[16]MARSAL R J. Large-scale Testing of Rockfill Material[J].Journal of the Soil Mechanics and Foundation Division,1967,93(2):27-43.
[17]MARSAL R J. Mechanical Properties of Rockfill Embankment Dam Engineering[M].New York: Wiley,1973:109-200.
[18]LEE K L, FARHOOMAND I. Compressibility and Crushing of Granular Soils in Anisotropic Triaxial Compression[J]. Canadian Geotechnical Journal, 1967,4(1): 68-86.

基金

国家自然科学基金项目(41172278,41572291);四川省教育厅重点项目(12ZA010)

PDF(2034 KB)

Accesses

Citation

Detail

段落导航
相关文章

/