水岩作用下软岩蠕变特性的研究对真实水环境下岩土工程长期稳定性有重要影响。采用轴压水压联合作用岩石流变试验系统,研究了滇中地区红层泥岩不同应力及水压作用下的蠕变特性。研究结果表明:岩样在低应力水平下以瞬时变形为主,蠕变曲线主要呈现出衰减蠕变和稳态蠕变阶段特征,仅在最后一级应力条件下出现加速蠕变阶段;相同水压条件下,泥岩瞬时应变、蠕变应变及蠕变速率均随加载应力的增大而增大,且水压越大,应力对泥岩蠕变的影响越敏感;相同应力条件下,泥岩蠕变应变、蠕变速率以及蠕变变形占总变形的比例均随水压的增大而增大,且应力水平越高,增大水压对泥岩蠕变特性的影响越显著。研究成果对于保证真实水环境下软岩工程安全具有重要的工程意义。
Abstract
The rheological property of soft rock under water-rock interaction is crucial for the long-term stability of geotechnical projects in real water environment. The creep characteristics of red mudstone in central Yunnan under different stresses and water pressures were studied by means of rock rheological test system under combined action of axial compression and hydraulic pressure. Results unveiled that instantaneous deformation was dominant at low stress level, and the creep curves mainly displayed attenuation and steady stages; accelerated creep stage only appeared at the last stress level. Given the same hydraulic pressure, the instantaneous strain, creep strain and creep rate of mudstone increased with the augment of loading stress; creep characteristics of mudstone are more sensitive to the stress under high water pressure. Under the same stress level, the creep strain, creep rate and the proportion of creep deformation to total deformation of mudstone increased with the climbing of water pressure; such increment intensified under higher stress. The research findings are of engineering significance for ensuring the safety of soft rock project in real water environment.
关键词
红层泥岩 /
蠕变特性 /
水岩作用 /
轴压水压联合作用 /
岩石流变试验
Key words
red mudstone /
creep property /
water-rock interaction /
combined action of axial compression and hydraulic pressure /
rock rheology test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813.
[2] CAO Ping, WAN Lin-hui, WANG Yi-xian, et al. Viscoelasto-plastic Properties of Deep Hard Rocks under Water Environment[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12):2711-2718.
[3] 周翠英, 谭祥韶, 邓毅梅, 等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报, 2005, 24(3):394-400.
[4] 王 振, 沈明荣, 刘 昂. 钙质泥岩水岩作用特征及遇水软化机理[J]. 西南交通大学学报, 2015, 50(6):1061-1066.
[5] 李 铀, 朱维申, 白世伟, 等 风干与饱水状态下花岗岩单轴流变特性试验研究[J]. 岩石力学与工程学报, 2003, 22(10): 1673-1677.
[6] 黄小兰, 杨春和, 刘建军, 等. 不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3477-3482.
[7] 杨圣奇, 徐卫亚, 谢守益, 等. 饱和状态下硬岩三轴流变变形与破裂机制研究[J]. 岩土工程学报, 2006, 28(8): 962-969.
[8] 朱合华, 叶 斌. 饱水状态下隧道围岩蠕变力学性质的试验研究[J]. 岩石力学与工程学报, 2002, 21(12): 1791-1796.
[9] 李 男, 徐 辉, 胡 斌. 干燥与饱和状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2): 439-443.
[10]左清军, 吴 立, 李 波, 等. 富水泥质板岩隧道围岩蠕变力学特性研究[J]. 岩石力学与工程学报, 2015, 34(10): 2047-2056.
[11]秦 哲, 付厚利, 程卫民, 等. 水岩作用下露天坑边坡岩石蠕变试验分析[J]. 长江科学院院报, 2017, 34(3): 85-89.
[12]刘光廷, 胡 昱, 陈凤岐, 等. 软岩多轴流变特性及其对拱坝的影响[J]. 岩石力学与工程学报, 2004(8):1237-1241.
[13]阎 岩,王恩志, 王思敬, 等. 岩石渗流-流变耦合的试验研究[J]. 岩土力学, 2010, 31(7):2095-2103.
[14]佘成学, 崔 旋. 高孔隙水压力对岩石蠕变特性的影响[J]. 岩石力学与工程学报, 2010, 29(8): 1603-1609.
[15]黄书岭, 冯夏庭, 周 辉, 等. 水压和应力耦合下脆性岩石蠕变与破坏时效机制研究[J]. 岩土力学, 2010, 31(11):3441-3446.
[16]YANG S Q, JING H W, CHENG L. Influences of Pore Pressure on Short-term and Creep Mechanical Behavior of Red Sandstone[J]. Engineering Geology, 2014, 179(4): 10-23.
[17]李 勃, 刘长武, 谢 辉, 等. 水压环境下砂岩蠕变特性试验研究[J]. 工程科学与技术, 2017, 49(增刊1):119-124.
[18]TSAI L S, HSIEH Y M, WENG M C, et al. Time-dependent Deformation Behaviors of Weak Sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 144-154.
基金
国家重点研发计划项目(2017YFC1501102);四川省杰出青年基金资助项目(2016JQ0011)