大量的压缩试验结果表明,堆石料试样的压缩特性和颗粒破碎特性存在明显的缩尺效应,但系统研究缩尺方法、试样最大粒径、试样直径等对颗粒破碎特性的影响较少。采用侧限压缩试验开展灰岩堆石料的尺寸效应研究,分析了缩尺方法、试样直径和试样最大粒径对压缩特性和颗粒破碎特性的影响规律。结果表明:压缩系数随着试样中粗颗粒含量的上升呈先降低后增大的趋势,压缩系数与试样最大粒径呈正相关,与试样直径呈负相关;引入相对颗粒破碎率评价指标,建立了缩尺方法与相对颗粒破碎率之间的幂函数关系,相对颗粒破碎率随试样直径和试样最大粒径的发展规律可拟合为曲面方程。研究成果可为进一步构建考虑缩尺效应的弹塑性本构模型提供理论基础。
Abstract
A comprehensive investigation into the compression characteristics and particle crushing behavior of rockfill samples has revealed a significant scale effect, while the study on influences of scale method, maximum particle size, and sample dimensions have been found to be relatively less significant. To begin with, confined compression tests and screening tests were conducted to study the size effect of limestone rockfill. The study examined the variations of compression coefficient and particle crushing behavior with respect to the scale method, sample dimensions, and maximum particle size. Results indicate that compression coefficient initially decreases and then increases with the increase in coarse particle content within the sample. Moreover, a positive correlation was observed between the compression coefficient and the maximum particle size of the sample, while a negative correlation was found between compression coefficient and sample size. To assess the degree of particle breakage, a relative particle crushing rate was employed to establish a power function relationship between the scale method and the relative particle crushing rate. The patterns of particle crushing rate development in relation to sample size and maximum particle size can be fitted into a curved surface equation. The findings of this research contribute to the establishment of a constitutive model that accounts for the scale effect.
关键词
堆石料 /
缩尺效应 /
颗粒破碎 /
试验研究
Key words
rockfill /
scale effect /
particle breakage /
experimental study
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 傅 华, 韩华强, 凌 华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649.
[2] 王思睿, 朱俊高, 陈浩锋, 等. 不同方法缩尺后粗粒料强度和变形特性研究[J]. 河北工程大学学报(自然科学版), 2019, 36(1): 36-40, 74.
[3] 左永振, 张 伟, 潘家军, 等. 粗粒料级配缩尺方法对其最大干密度的影响研究[J]. 岩土力学, 2015, 36(增刊1): 417-422.
[4] 朱俊高, 刘 忠, 翁厚洋, 等. 试样尺寸对粗粒土强度及变形试验影响研究[J]. 四川大学学报(工程科学版), 2012, 44(6): 92-96.
[5] 马 刚, 周 伟, 常晓林, 等. 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2473-2482.
[6] 孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947.
[7] 马 捷, 韩文喜, 聂 超. 粗颗粒填料蠕变的缩尺效应研究[J]. 水力发电, 2019, 45(9): 27-31.
[8] 蔡国军, 陈世豪, 周 扬, 等. P5含量对砾类土强度与变形特性影响的试验研究[J]. 水利水电技术, 2020, 51(1): 187-195.
[9] 李扬波, 张家生, 朱志辉, 等. 基于Hardin骨架曲线的粗粒土非线性动本构模型[J]. 重庆大学学报, 2018, 41(11): 19-30.
[10]韩华强, 陈生水, 傅 华, 等. 循环荷载作用下堆石料的颗粒破碎特性[J]. 岩土工程学报, 2017, 39(10): 1753-1760.
[11]陈 坚,罗 强,赵明志,等.径径比对粗颗粒土干密度的影响试验研究[J].铁道建筑,2014,54(5):154-156.
[12]HARDIN B O. Crushing of Soil Particles[J]. Geotechnical Engineering, 1985, 111(10): 1177-1192.
[13]EINAV I.Breakage Mechanics-PartⅠ:Theory[J].Mechanics and Physics of Solids,2007,55(6):1274-1297.
[14]郭万里, 朱俊高, 王青龙, 等. 基于级配方程的粗粒料级配演化预测模型[J]. 中南大学学报(自然科学版), 2018, 49(8): 2076-2082.
[15]刘萌成, 孟 锋, 王洋洋. 粗粒料颗粒破碎变化规律大型三轴试验研究[J]. 岩土工程学报, 2020, 42(3): 561-567.
[16]朱俊高, 翁厚洋, 吴晓铭, 等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8): 2394-2398.
[17]于际都, 沈超敏, 刘斯宏. 染色石膏颗粒一维压缩破碎与粒径迁移[J]. 岩石力学与工程学报, 2020, 39(5): 1071-1079.
[18]魏 浩, 沈超敏, 刘斯宏, 等. 考虑级配影响的粗粒料压缩破碎特性试验[J]. 河海大学学报(自然科学版), 2020, 48(2): 182-188.
基金
中国博士后科学基金面上资助项目(2019M663890XB);重庆市博士后科研特别资助项目(228512);重庆市建设科技计划项目(2022-0104)