长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9): 27-34.DOI: 10.11988/ckyyb.20230415

• 水资源 • 上一篇    下一篇

基于Vine Copula的鄱阳湖流域近70年洪水空间分异规律

吴家璇1,2(), 胡实1, 王月玲1(), 占车生1,3   

  1. 1 中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
    2 中国科学院大学,北京 100049
    3 中国科学院禹城综合试验站,北京 100101
  • 收稿日期:2023-04-18 修回日期:2023-07-14 出版日期:2024-09-01 发布日期:2024-09-20
  • 通讯作者: 王月玲
  • 作者简介:

    吴家璇(1999-),女,河南郑州人,硕士研究生,研究方向为水文水资源。E-mail:

  • 基金资助:
    中国科学院战略性先导科技专项(XDA23040502); 中国科学院陆地水循环及地表过程重点实验室开放基金项目(WL2019003)

Vine Copula-based Analysis on Spatial Differentiation Pattern of Flood in Poyang Lake Basin in the Past Seven Decades

WU Jia-xuan1,2(), HU Shi1, WANG Yue-ling1(), ZHAN Che-sheng1,3   

  1. 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences andNatural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2 University of ChineseAcademy of Sciences, Beijing 100049, China
    3 Yucheng Comprehensive Experiment Station,Chinese Academy of Sciences, Beijing 100101,China
  • Received:2023-04-18 Revised:2023-07-14 Published:2024-09-01 Online:2024-09-20
  • Contact: WANG Yue-ling

摘要:

量化流域的洪水空间分异规律,对防洪减灾具有重要意义。采用鄱阳湖流域不同支流7个水文站近70 a日径流量资料,利用自动峰值超阈值模型、主衰退曲线分析法确定总洪量、洪峰流量和持续时间3个洪水特征,基于Vine Copula模型建立三维联合分布,计算联合、同现和2种条件重现期来对比研究各支流的洪水演化规律。结果显示:洪峰流量最优边缘分布为对数正态分布,总洪量以伽马分布为主;Gaussian Copula模型对洪峰流量和总洪量的相关性结构拟合效果良好,Gaussian Copula模型和Student t Copula模型适合建立总洪量条件下洪峰流量和持续时间的相关性结构;鄱阳湖流域西部会形成总洪量、洪峰流量和持续时间均较大的灾难性大洪水;流域东部容易在短期内积累较大的洪量,而不会形成持续性洪水;在洪量一定的情况下,流域南部洪水的洪峰流量最大。研究结果可为鄱阳湖流域改进洪水预警方法和制定洪水分级管理策略提供参考。

关键词: 多维联合分布, Vine Copula模型, 洪水特征值, 重现期, 鄱阳湖流域

Abstract:

Quantifying the spatial differentiation of floods within a basin is crucial for effective flood control and disaster management. We analyzed daily runoff data from seven hydrological stations across different tributaries in the Poyang Lake Basin over the past 70 years by using the automatic peaks-over-threshold model and the master recession curve analysis method to extract three flood characteristics: total flood volume, peak discharge, and flood duration. We constructed a three-dimensional joint distribution for each hydrological station using the Vine Copula function and compared the flood patterns across stations by calculating joint return periods, concurrent return periods, and two conditional return periods. Our findings reveal the following: 1) The Log-Normal distribution best describes the marginal distribution of peak discharge, while the Gamma distribution most effectively fits total flood volume. 2) Gaussian Copula accurately represents the correlation between peak flow and total flood volume, whereas Gaussian and Student t Copulas are appropriate for the correlation between peak flow and duration under conditions of total flood volume. 3) The western Poyang Lake Basin is highly susceptible to catastrophic floods, characterized by higher total flood volume, peak discharge, and duration. 4) In contrast, the eastern basin can accumulate significant flood volumes quickly but does not experience prolonged floods. 5) The southern basin, however, may experience extreme peak flows given a substantial flood volume. These results offer valuable insights for enhancing flood warning systems and developing effective rated flood management strategies in the Poyang Lake Basin.

Key words: multi-dimensional joint distribution, Vine Copula model, flood characteristics, return period, Poyang Lake Basin

中图分类号: