基于Vine Copula的鄱阳湖流域近70年洪水空间分异规律

吴家璇, 胡实, 王月玲, 占车生

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 27-34.

PDF(3804 KB)
PDF(3804 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (9) : 27-34. DOI: 10.11988/ckyyb.20230415
水资源

基于Vine Copula的鄱阳湖流域近70年洪水空间分异规律

作者信息 +

Vine Copula-based Analysis on Spatial Differentiation Pattern of Flood in Poyang Lake Basin in the Past Seven Decades

Author information +
文章历史 +

摘要

量化流域的洪水空间分异规律,对防洪减灾具有重要意义。采用鄱阳湖流域不同支流7个水文站近70 a日径流量资料,利用自动峰值超阈值模型、主衰退曲线分析法确定总洪量、洪峰流量和持续时间3个洪水特征,基于Vine Copula模型建立三维联合分布,计算联合、同现和2种条件重现期来对比研究各支流的洪水演化规律。结果显示:洪峰流量最优边缘分布为对数正态分布,总洪量以伽马分布为主;Gaussian Copula模型对洪峰流量和总洪量的相关性结构拟合效果良好,Gaussian Copula模型和Student t Copula模型适合建立总洪量条件下洪峰流量和持续时间的相关性结构;鄱阳湖流域西部会形成总洪量、洪峰流量和持续时间均较大的灾难性大洪水;流域东部容易在短期内积累较大的洪量,而不会形成持续性洪水;在洪量一定的情况下,流域南部洪水的洪峰流量最大。研究结果可为鄱阳湖流域改进洪水预警方法和制定洪水分级管理策略提供参考。

Abstract

Quantifying the spatial differentiation of floods within a basin is crucial for effective flood control and disaster management. We analyzed daily runoff data from seven hydrological stations across different tributaries in the Poyang Lake Basin over the past 70 years by using the automatic peaks-over-threshold model and the master recession curve analysis method to extract three flood characteristics: total flood volume, peak discharge, and flood duration. We constructed a three-dimensional joint distribution for each hydrological station using the Vine Copula function and compared the flood patterns across stations by calculating joint return periods, concurrent return periods, and two conditional return periods. Our findings reveal the following: 1) The Log-Normal distribution best describes the marginal distribution of peak discharge, while the Gamma distribution most effectively fits total flood volume. 2) Gaussian Copula accurately represents the correlation between peak flow and total flood volume, whereas Gaussian and Student t Copulas are appropriate for the correlation between peak flow and duration under conditions of total flood volume. 3) The western Poyang Lake Basin is highly susceptible to catastrophic floods, characterized by higher total flood volume, peak discharge, and duration. 4) In contrast, the eastern basin can accumulate significant flood volumes quickly but does not experience prolonged floods. 5) The southern basin, however, may experience extreme peak flows given a substantial flood volume. These results offer valuable insights for enhancing flood warning systems and developing effective rated flood management strategies in the Poyang Lake Basin.

关键词

多维联合分布 / Vine Copula模型 / 洪水特征值 / 重现期 / 鄱阳湖流域

Key words

multi-dimensional joint distribution / Vine Copula model / flood characteristics / return period / Poyang Lake Basin

引用本文

导出引用
吴家璇, 胡实, 王月玲, . 基于Vine Copula的鄱阳湖流域近70年洪水空间分异规律[J]. 长江科学院院报. 2024, 41(9): 27-34 https://doi.org/10.11988/ckyyb.20230415
WU Jia-xuan, HU Shi, WANG Yue-ling, et al. Vine Copula-based Analysis on Spatial Differentiation Pattern of Flood in Poyang Lake Basin in the Past Seven Decades[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 27-34 https://doi.org/10.11988/ckyyb.20230415
中图分类号: P333.2   

参考文献

[1]
宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013, 44(7): 779-790.
(SONG Xiao-meng, ZHANG Jian-yun, ZHAN Che-sheng, et al. Review for Impacts of Climate Change and Human Activities on Water Cycle[J]. Journal of Hydraulic Engineering, 2013, 44(7): 779-790. (in Chinese))
[2]
方春明, 曹文洪, 毛继新, 等. 鄱阳湖与长江关系及三峡蓄水的影响[J]. 水利学报, 2012, 43(2): 175-181.
(FANG Chun-ming, CAO Wen-hong, MAO Ji-xin, et al. Relationship between Poyang Lake and Yangtze River and Influence of Three Georges Reservoir[J]. Journal of Hydraulic Engineering, 2012, 43(2): 175-181. (in Chinese))
[3]
郭华, 张奇, 王艳君. 鄱阳湖流域水文变化特征成因及旱涝规律[J]. 地理学报, 2012, 67(5): 699-709.
(GUO Hua, ZHANG Qi, WANG Yan-jun. Annual Variations in Climatic and Hydrological Processes and Related Flood and Drought Occurrences in the Poyang Lake Basin[J]. Acta Geographica Sinica, 2012, 67(5): 699-709. (in Chinese))
[4]
雷声. 2020年鄱阳湖洪水回顾与思考[J]. 水资源保护, 2021, 37(6): 7-12.
(LEI Sheng. Review and Reflection on Poyang Lake Flood in 2020[J]. Water Resources Protection, 2021, 37(6): 7-12. (in Chinese))
[5]
刘剑宇, 张强, 顾西辉, 等. 鄱阳湖流域洪水变化特征及气候影响研究[J]. 地理科学, 2016, 36(8): 1234-1242.
(LIU Jian-yu, ZHANG Qiang, GU Xi-hui, et al. Floods Characteristics and Impacts from Climate Indices in the Poyang Lake Basin[J]. Scientia Geographica Sinica, 2016, 36(8): 1234-1242. (in Chinese))
[6]
ZHOU H, LUO Z, TANGDAMRONGSUB N, et al. Identifying Flood Events over the Poyang Lake Basin Using Multiple Satellite Remote Sensing Observations, Hydrological Models and in Situ Data[J]. Remote Sensing, 2018, 10(5): 713.
[7]
张强, 孙鹏, 江涛. 鄱阳湖流域水文极值演变特征、成因与影响[J]. 湖泊科学, 2011, 23(3): 445-453.
(ZHANG Qiang, SUN Peng, JIANG Tao. Changing Properties, Causes and Impacts of Extreme Streamflow in Lake Poyang Basin, China[J]. Journal of Lake Sciences, 2011, 23(3): 445-453. (in Chinese))
[8]
LIU M, MA X, YIN Y, et al. Non-stationary Frequency Analysis of Extreme Streamflow Disturbance in a Typical Ecological Function Reserve of China under a Changing Climate[J]. Ecohydrology, 2021, 14(7): e2323.
[9]
丛树铮, 胡四一. 洪水频率分析的现状与展望[J]. 水文, 1987, 7(6): 52-58.
(CONG Shu-zheng, HU Si-yi. Present Situation and Prospect of Flood Frequency Analysis[J]. Journal of China Hydrology, 1987, 7(6): 52-58. (in Chinese))
[10]
郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314.
(GUO Sheng-lian, LIU Zhang-jun, XIONG Li-hua. Advances and Assessment on Design Flood Estimation Methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314. (in Chinese))
[11]
郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7.
(GUO Sheng-lian, YAN Bao-wei, XIAO Yi, et al. Multivariate Hydrological Analysis and Estimation[J]. Journal of China Hydrology, 2008, 28(3): 1-7. (in Chinese))
[12]
曾珂, 谭学志, 梁廖逢, 等. 基于Copula函数的气候变化下洪水峰量联合分析[J]. 长江科学院院报, 2020, 37(12): 40-46.
(ZENG Ke, TAN Xue-zhi, LIANG Liao-feng, et al. Copula-based Bivariate Frequency Analysis of Flood Peak Volume under Climate Changes[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(12): 40-46. (in Chinese))
[13]
苗正伟, 丁志宏, 路梅, 等. 基于Copula函数的洪水峰量联合设计方法研究[J]. 长江科学院院报, 2021, 38(11): 18-24.
(MIAO Zheng-wei, DING Zhi-hong, LU Mei, et al. Joint Design of Flood Peak and Volume Based on Copula Function[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 18-24. (in Chinese))
[14]
刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159.
(LIU Zhang-jun, GUO Sheng-lian, XU Xin-fa, et al. Application of Copula Functions in Hydrology and Water Resources: A State-of-the-Art Review[J]. Advances in Water Science, 2021, 32(1): 148-159. (in Chinese))
[15]
刘源, 纪昌明, 张验科, 等. 基于Vine Copula的短期径流预报不确定性分析[J]. 水力发电学报, 2022, 41(7): 95-105.
(LIU Yuan, JI Chang-ming, ZHANG Yan-ke, et al. Vine Copula-based Analysis on Uncertainty of Short-term Streamflow Forecasting[J]. Journal of Hydroelectric Engineering, 2022, 41(7): 95-105. (in Chinese))
[16]
NAZERI TAHROUDI M, RAMEZANI Y, DE MICHELE C, et al. Trivariate Joint Frequency Analysis of Water Resources Deficiency Signatures Using Vine Copulas[J]. Applied Water Science, 2022, 12(4): 67.
[17]
GRALER B, VAN DEN BERG M J, VANDENBERGHE S, et al. Multivariate Return Periods in Hydrology: a Critical and Practical Review Focusing on Synthetic Design Hydrograph Estimation[J]. Hydrology and Earth System Sciences, 2013, 17(4): 1281-1296.
[18]
DANESHKHAH A, REMESAN R, CHATRABGOUN O, et al. Probabilistic Modeling of Flood Characterizations with Parametric and Minimum Information Pair-copula Model[J]. Journal of Hydrology, 2016, 540: 469-487.
[19]
TOSUNOGLU F, GÜRBÜZ F, ÍSPIRLI M N. Multivariate Modeling of Flood Characteristics Using Vine Copulas[J]. Environmental Earth Sciences, 2020, 79(19): 459.
[20]
ZHANG B, WANG S, WANG Y. Probabilistic Projections of Multidimensional Flood Risks at a Convection-permitting Scale[J]. Water Resources Research, 2021, 57(1): e2020WR028582.
[21]
樊述全. 鄱阳湖流域降雨时空分布规律及其水文响应[D]. 南京: 河海大学, 2007.
(FAN Shu-quan. Spatial and Temporal Distribution of Rainfall and Hydrological Responses in Poyang Lake Watershed[D]. Nanjing: Hohai University, 2007. (in Chinese))
[22]
ZHANG Q, ZHANG L, SHE D, et al. Automatic Procedure for Selecting Flood Events and Identifying Flood Characteristics from Daily Streamflow Data[J]. Environmental Modelling & Software, 2021, 145: 105180.
[23]
舒晓娟, 陈洋波, 任启伟. 模型选择准则在洪水频率分析中的应用[J]. 水利学报, 2010, 41(1): 80-85.
(SHU Xiao-juan, CHEN Yang-bo, REN Qi-wei. Model Selection Criteria for Flood Frequency Analysis[J]. Journal of Hydraulic Engineering, 2010, 41(1): 80-85. (in Chinese))
[24]
SKLAR A. Fonctions de Répartition à n Dimensions et Leurs Marges[J]. Publications de l’Institut Statistique de l’Université de Paris, 1959,(8): 229-231.
[25]
BEDFORD T, COOKE R M. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32(1): 245-268.
[26]
AAS K, CZADO C, FRIGESSI A, et al. Pair-copula Constructions of Multiple Dependence[J]. Insurance: Mathematics and Economics, 2009, 44(2): 182-198.
[27]
金斌松, 聂明, 李琴, 等. 鄱阳湖流域基本特征、面临挑战和关键科学问题[J]. 长江流域资源与环境, 2012, 21(3): 268-275.
(JIN Bin-song, NIE Ming, LI Qin, et al. Basic Characteristics, Challenges and Key Scientific Questions of the Poyang Lake Basin[J]. Resources and Environment in the Yangtze Basin, 2012, 21(3): 268-275. (in Chinese))
[28]
KARAHACANE H, MEDDI M, CHEBANA F, et al. Complete Multivariate Flood Frequency Analysis, Applied to Northern Algeria[J]. Journal of Flood Risk Management, 2020, 13(4): e12619.
[29]
GENEST C, RIVEST L P. Statistical Inference Procedures for Bivariate Archimedean Copulas[J]. Journal of the American Statistical Association, 1993, 88(423): 1034-1043.
[30]
孙莉英, 倪晋仁, 蔡强国, 等. 中国洪水灾害风险县(市)统计分布特征研究[J]. 自然资源学报, 2013, 28(3): 391-401.
(SUN Li-ying, NI Jin-ren, CAI Qiang-guo, et al. Statistical Distribution Characteristics of Counties and Cities for Flood Risk in China[J]. Journal of Natural Resources, 2013, 28(3): 391-401. (in Chinese))
[31]
王秀琴, 王旭. 1980—2019年新疆南部不同强度暴雨洪水灾害的空间分布和时间变化特征[J]. 冰川冻土, 2021, 43(6): 1818-1828.
(WANG Xiu-qin, WANG Xu. Spatial Distribution and Temporal Variation Characteristics of Rainstorm Flood Disasters with Different Intensities in Southern Xinjiang from 1980 to 2019[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1818-1828. (in Chinese))
[32]
韦艳华, 张世英. Copula理论及其在金融分析上的应用[M]. 北京: 清华大学出版社, 2008.
(WEI Yan-hua, ZHANG Shi-ying. Copula Theory and Its Application in Financial Analysis[M]. Beijing: Tsinghua University Press, 2008. (in Chinese))
[33]
郭华, 姜彤. 鄱阳湖流域洪峰流量和枯水流量变化趋势分析[J]. 自然灾害学报, 2008, 17(3): 75-80.
(GUO Hua, JIANG Tong. Trend Analysis of Flood Peak/Dry Season Flowrate in Poyang Lake Basin[J]. Journal of Natural Disasters, 2008, 17(3): 75-80. (in Chinese))
[34]
LI X, HU Q. Spatiotemporal Changes in Extreme Precipitation and Its Dependence on Topography over the Poyang Lake Basin, China[J]. Advances in Meteorology, 2019, Doi: 10.1155/2019/1253932.
[35]
许炯心. 长江上游干支流的水沙变化及其与森林破坏的关系[J]. 水利学报, 2000, 31(1): 72-80.
(XU Jiong-xin. Runoff and Sediment Variations in the Upper Reaches of Changjiang River and Its Tributaries Due to Deforestation[J]. Journal of Hydraulic Engineering, 2000, 31(1): 72-80. (in Chinese))
[36]
LEI X, GAO L, WEI J, et al. Contributions of Climate Change and Human Activities to Runoff Variations in the Poyang Lake Basin of China[J]. Physics and Chemistry Earth, Parts A/B/C, 2021, 123: 103019.
[37]
夏军, 陈进. 从防御2020年长江洪水看新时代防洪战略[J]. 中国科学:地球科学, 2021, 51(1): 27-34.
(XIA Jun, CHEN Jin. A New Era of Flood Control Strategies from the Perspective of Managing the 2020 Yangtze River Flood[J]. Scientia Sinica (Terrae), 2021, 51(1): 27-34. (in Chinese))

基金

中国科学院战略性先导科技专项(XDA23040502)
中国科学院陆地水循环及地表过程重点实验室开放基金项目(WL2019003)

编辑: 刘运飞
PDF(3804 KB)

Accesses

Citation

Detail

段落导航
相关文章

/