长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3): 126-133.DOI: 10.11988/ckyyb.20221323

• 工程安全与灾害防治 • 上一篇    下一篇

一种滑动检测算法下的滑坡位移时序分解方法

冯谕1, 曾怀恩1,2,3, 涂鹏飞1,3   

  1. 1.三峡大学 土木与建筑学院,湖北 宜昌 443002;
    2.三峡大学 湖北长江三峡滑坡国家野外科学观测研究站,湖北 宜昌 443002;
    3.三峡大学 湖北省水电工程施工与管理重点实验室,湖北 宜昌 443002
  • 收稿日期:2022-10-08 修回日期:2022-12-30 出版日期:2024-03-01 发布日期:2024-03-05
  • 通讯作者: 涂鹏飞(1965-),男,湖北宜昌人,正高级工程师,硕士,研究方向为地质灾害监测与预警。E-mail:13872539886@163.com
  • 作者简介:冯 谕(1998-),男,山西阳泉人,硕士研究生,研究方向为滑坡监测数据处理。E-mail:2044207612@qq.com
  • 基金资助:
    国家自然科学基金项目(42074005);湖北省地质局2021年度科技项目(KJ2021-16)

A Time Series Decomposition Method for Landslide Displacement Based on Sliding Detection Algorithm

FENG Yu1, ZENG Huai-en1,2,3, TU Peng-fei1,3   

  1. 1. College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China;
    2. National Field Observation and Research Station of Landslides in the Three Gorges Reservoir Area of Yangtze River, China Three Gorges University, Yichang 443002, China;
    3. Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang 443002, China
  • Received:2022-10-08 Revised:2022-12-30 Published:2024-03-01 Online:2024-03-05

摘要: 针对“阶跃式”滑坡位移时序分解模型力学解释性不强的缺陷,根据西原蠕变本构模型与自适应改进遗传算法模型,提出滑动Rnl阶跃点检测方法与改进加权移动平均修正阶跃项位移方法,并将该方法应用于白水河滑坡位移时序分解。将滑动Rnl阶跃点检测结果与MK检验结果、滑动t检验结果以及Bayes检测结果作对比。结果表明,滑动Rnl阶跃点检测结果更加准确与适用;同时将新型滑坡位移时序分解结果与二次移动平均时序分解结果、三次指数平滑时序分解结果以及VMD时序分解结果作对比。结果表明,新型滑坡位移时序分解方法解决了滑坡趋势项位移无规律、无力学解释性的问题,且在时序分解加法模式中单独引入滑坡位移预测中最重要的阶跃项位移,分析预测更具有针对性。因此,新型时序分解模型有一定的工程价值与时序预测借鉴价值。

关键词: 滑坡位移, 时序分解, 阶跃项位移, 蠕变模型, 遗传算法, 滑动检测

Abstract: To address the issue of weak mechanical interpretation in the time-series decomposition model of step-type landslide displacement, we propose a decomposition method incorporating sliding Rnl step-point detection and improved weighted moving average method to modify step-term displacement. Both the Nishihara creep constitutive model and a self-adaptive improved genetic algorithm model were utilized. The proposed method was applied to decompose the displacement time series of Baishuihe landslide. The results of the proposed method were compared with those of the MK Test, sliding t test, and the Bayes test, demonstrating that the sliding Rnl step-point detection yields more accurate and applicable results. Furthermore, the displacement time series decomposition results were also compared with those obtained from quadratic moving average time series decomposition, cubic exponential smoothing time series decomposition, and VMD time series decomposition. The findings reveal that our proposed decomposition method effectively addresses irregular displacement and enhances the mechanical interpretation of the landslide trend term. Additionally, the introduction of the most critical step-term displacement in landslide displacement prediction enhances the specificity of analysis and prediction. In conclusion, our decomposition model holds significant engineering value and serves as a valuable reference for time series prediction.

Key words: landslide displacement, time series decomposition, step term displacement, creep model, genetic algorithm, slide test

中图分类号: