长江科学院院报 ›› 2019, Vol. 36 ›› Issue (4): 88-92.DOI: 10.11988/ckyyb.20180281
饶云康1,丁瑜1,2,3,许文年1,2,3,张亮1,张恒1,潘波1
RAO Yun-kang1, DING Yu1, 2, 3, XU Wen-nian1, 2, 3, ZHANG Liang1, ZHANG Heng1, PAN Bo1
摘要: 建立砾类土最大干密度预估模型,为控制砾类土工程填筑压实质量、选取满足工程压实性能要求的砾类土提供最大干密度预估参考。颗粒级配是决定砾类土最大干密度的关键因素,收集并整理得到92组砾类土数据,以全级配(d10~d100)作为BP(GA-BP)神经网络的输入变量,利用遗传算法优化BP神经网络的初始权值与阀值,构建基于BP神经网络和遗传算法的砾类土最大干密度预估模型,并与BP神经网络进行对比。86组训练样本预估结果的平均相对误差为0.54%,决定系数为0.983;6组检测样本预估结果的平均相对误差为0.57%,证明该网络模型泛化性能良好。采用GA-BP神经网络,由全级配能较好地预估砾类土最大干密度,收敛速度、预估精度及泛化性能均优于标准的BP神经网络模型。
中图分类号: