长江科学院院报 ›› 2017, Vol. 34 ›› Issue (3): 50-52.DOI: 10.11988/ckyyb.20151012

• 工程安全与灾害防治 • 上一篇    下一篇

改进的非等间距灰色模型在大坝位移预测中的应用

俞艳玲a,b,c,郑东健a,b,c,俞扬a,b,c,居艳阳a,b,c,方正a,b,c   

  1. 河海大学a. 水利水电学院;b.水文水资源与水利工程科学国家重点实验室; c.水资源高效利用与工程安全国家工程研究中心,南京 210098
  • 收稿日期:2015-11-27 出版日期:2017-03-01 发布日期:2017-03-10
  • 作者简介:俞艳玲 (1991-),女,安徽合肥人,硕士研究生,研究方向为水工结构工程安全监测,(电话)18205151941(电子信箱)594395928@qq.com。
  • 基金资助:
    国家自然科学基金重点项目(41323001,51139001);国家自然科学基金面上项目(51379068,51179066);国家自然科学基金项目(51279052,51579085);水利部公益性行业科研专项经费项目(201201038,201301061);江苏省杰出青年基金项目(BK2012036);江苏高校优势学科建设工程资助项目(水利工程)(YS11001);江苏省“六大人才高峰”项目(JY008)

Application of Improved Non-equidistance Grey Model to Forecasting Dam Displacement

YU Yan-ling1,2,3, ZHENG Dong-jian1,2,3, YU Yang1,2,3, JU Yan-yang1,2,3,FANG Zheng1,2,3   

  1. 1.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;
    2.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
    3.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
  • Received:2015-11-27 Online:2017-03-01 Published:2017-03-10

摘要: 传统GM(1,1)预测模型在大坝位移拟合及预测中存在优化方式单一、适应性不佳等不足,一定程度上影响模型的预测效果。基于蛙跳算法,通过优化背景值和平滑系数、寻找最优定解条件以及残差优化等方法,提出了改进的非等间距GM(1,1)大坝位移预测模型。结合相关工程实例,对比分析了2种模型的拟合效果和预测精度,说明了相对于传统GM(1,1)大坝位移预测模型,改进的GM(1,1)大坝位移预测模型能有效提高位移预测精度,可以应用于实际大坝结构中的位移监控及预测。

关键词: 大坝位移, 预测模型, 改进GM(1, 1)模型, 混合蛙跳算法, 残差优化

Abstract: Traditional GM(1,1) forecasting model has such deficiencies as single optimization method and poor adaptability in fitting and estimating dam displacement, which affect the estimation result. In this paper, an improved non-equidistance GM(1,1) forecasting model is proposed by using Suffled Frog Leaping Algorithm to optimize background value and smoothing coefficient, to search for optimal definite condition and correct residual error. The fitting results and prediction accuracy of traditional model and the proposed model are compared through an engineering example application. Results suggest that the improved GM(1,1) model could enhance the prediction accuracy effectively, hence can be used in the monitoring and prediction of dam displacement.

Key words: dam displacement, forecasting model, improved GM(1,1), shuffled frog leaping algorithm(SFLA), optimization of residual error

中图分类号: