长江科学院院报 ›› 2016, Vol. 33 ›› Issue (8): 138-143.DOI: 10.11988/ckyyb.20150482

• 仪器设备与测试技术 • 上一篇    下一篇

基于混沌粒子群算法的水轮机调速系统参数辨识及建模试验

冯雁敏1,王湛1,张雪源2,张恩博1,刘春林1   

  1. 1.国家电网辽宁省电力有限公司 电力科学研究院,沈阳 110006;
    2.东北电网有限公司,沈阳 110180
  • 收稿日期:2015-06-08 修回日期:2015-06-18 出版日期:2016-07-25 发布日期:2016-07-25
  • 作者简介:冯雁敏(1984-),男,河北邢台人,高级工程师,硕士,研究方向为水轮机调节系统控制理论,(电话)15002438018(电子信箱)neprifengyanmin@163.com。

Parameters Identification of Hydro-turbine Governing System Based on Chaos Particle Swarm Optimization and Modeling Experiment

FENG Yan-min1, WANG Zhan1, ZHANG Xue-yuan2,ZHANG En-bo1, LIU Chun-lin1   

  1. 1.Electric Power Research Institute of State Grid Liaoning Electric Power Supply Co., Ltd.,Shenyang 110006, China;
    2.Northeast China Grid Company Limited, Shenyang 110180, China
  • Received:2015-06-08 Revised:2015-06-18 Published:2016-07-25 Online:2016-07-25

摘要: 针对粒子群算法存在的后期收敛速度慢和易陷入局部最优等缺点,引入收缩因子和混沌优化思想对其改进,并将其应用于调速系统被控对象有关参数辨识问题上。提出一种水轮机调速系统参数辨识满意度函数设计的新方法,该方法直接计算系统响应的上升时间、调节时间、反调峰值功率、反调峰值时间等品质参数,并以系统总体满意度作为满意度函数。对某混流式水轮机调速器控制参数进行实测并对机组引水道参数进行辨识,试验结果表明仿真数据能够准确模拟机组负荷的频率阶跃扰动响应,可以满足电网稳定性计算要求;在系统受到较大干扰时,该算法仍具有精确的参数辨识能力和很高的收敛效率。

关键词: 水轮机调速器, 建模, 参数测试, 满意度函数, 参数辨识, 混沌粒子群算法

Abstract: To overcome the shortcomings of standard Particle Swarm Optimization(PSO), for example, prone to local optimum and slow later convergence and so on, shrinkage factor and chaos idea were adopted to improve standard PSO in the study. A novel design method for satisfactory function of hydro-turbine governing system was put forward. Chaos PSO was applied to parameters identification of controlled object for governing system. Quality parameters, such as rise time, settling time, hydro-turbine’s reverse peak power and reverse peak time, were directly measured, and the overall satisfaction level of system was taken as fitness function. On the basis of the new method, the control parameters of a hydro-turbine governor were measured in association with parameter identification of hydroelectric turbine-conduit system. Test results show that the simulated data correctly reflect the response characteristics of cascade frequency disturbance for the unit load, and meet the requirements of power grid stability calculation. Furthermore, under large interference, the algorithm still has accurate parameter identification and high convergence efficiency.

Key words: hydro turbine governor, modeling, parameter testing, satisfactory function, parameter identification, chaos particle swarm optimization

中图分类号: