微博作为目前主流的互联网社交媒体,群众可在其上随时随地发布“河湖长制”相关的事件信息。通过微博对感兴趣事件进行提取与分类可以有效提高“河湖长制”管理过程中问题事件的发现与解决效率,并针对群众对河湖岸线管理状态评价进行有效的监测与分析。随着“互联网+”技术在河湖长制中发挥巨大作用,对微博社交大数据在“河湖长制”管理工作中的应用进行了探讨,基于互联网社交媒体中含有的大量关于“河湖长制”事件的文字描述信息,提出了微博社交文本信息挖掘系统框架,采用互联网爬取技术和语义分析技术抓取关于“河湖长制”事件的新闻和公众信息,并对事件进行识别,提取时间、位置和事件类型等标签,最后进行数据挖掘分析情感倾向。以2018年6月至2020年12月微博上珠江河网区数据为实例,情感分析模型在测试集上的事件分类准确率为88.6%,证明该模型具有一定的可用性。该舆情分析系统可极大提高了“河湖长制”管理效率。
Abstract
As the current mainstream Internet social media, Weibo allows its users to post information about events involved with the “River Chief System” anytime and anywhere on it. Extracting and classifying events improves the efficiency of discovering and solving problematic events in the management of river chief system, and also helps monitor and analyze the evaluation of the management status of river and lake shorelines for the people. The “Internet +” technology has been playing a tremendous role in the management of river chief system. In the present paper, the application of Weibo’s big data in the management of river chief system is discussed at first. A framework of text information mining system for Weibo is proposed based on the large amount of text description contained in social media. News and public information about events involved with river chief system can be captured by using Internet crawling technology and semantic recognition analysis technology via this framework. Tags of the events such as time, location, and type are identified and extracted, and finally people’s emotional tendencies are analyzed through data mining. With the data of Pearl River network from June 2018 to December 2020 on Weibo as a case study, the correctness of the model in training set reaches 88.6%, implying the feasibility of the model. The public opinion analysis system can help improve the management efficiency of the river chief system.
关键词
互联网大数据 /
文本处理 /
河湖长制 /
舆情分析 /
语义建模
Key words
Internet big data /
text processing /
River Chief System Management /
public opinion analysis /
semantic modeling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 靳 戈. 网络舆情分析方法研究[D].北京:北京大学,2013.
[2] 董坚峰. 面向公共危机预警的网络舆情分析研究[D].武汉:武汉大学,2013.
[3] 唐 涛.基于大数据的网络舆情分析方法研究[J].现代情报,2014,34(3):3-6,11.
[4] 柴巧霞,张筠浩.微博空间中环境政策的传播与公众议程分析:基于河湖长制的大数据分析[J].湖北大学学报(哲学社会科学版),2018,45(4):160-165.
[5] 张宁熙.大数据在突发公共事件网络舆情信息工作中的应用[J].现代情报,2015,35(6):38-42.
[6] 王艳东,李 昊,王 腾,等.基于社交媒体的突发事件应急信息挖掘与分析[J].武汉大学学报(信息科学版),2016,41(3):290-297.
[7] 吴 欢.群体性突发事件互联网舆情传播干预机制的研究[D].哈尔滨:东北林业大学, 2019.
[8] 白 华,林勋国.基于中文短文本分类的社交媒体灾害事件检测系统研究[J].灾害学,2016,31(2):19-23.
[9] 孔 珍,张叶廷,杜志强.基于微博数据的地震灾情信息识别与应用[J].地理信息世界,2020,27(6):98-104.
[10] 郑 嵘,张晨晓,乐 鹏,等.基于微博的灾害信息快速提取方法研究[J].测绘地理信息,2020,45(05):133-137.
[11] 郭 皓.运用互联网思维构建河湖长制O2O联动体系的思考[J].中国水利,2017(18):44-47.
[12] 黄国峰,马 铭.宁夏“互联网+河湖长制”探索与实践[J].水利发展研究,2019,19(10):53-56.
[13] 陈蓓青,谭德宝,田雪冬,等.大数据技术在水利行业中的应用探讨[J].长江科学院院报,2016,33(11):59-62,67.
[14] 陈箫箫,刘 波.微博中的开放域事件抽取[J].计算机应用与软件,2016,33(8):18-22,109.
[15] 陈晓东. 基于情感词典的中文微博情感倾向分析研究[D].武汉:华中科技大学,2012.
[16] 严军超,赵志豪,赵 瑞.基于机器学习的社交媒体文本情感分析研究[J].信息与电脑(理论版),2019,31(20):44-47.
[17] 崔安颀. 微博热点事件的公众情感分析研究[D].北京:清华大学,2013.
基金
国家重点研发计划项目(2018YFC0407805);中央级公益性科研院所基本科研业务费项目(XKSF2021297/KJ)