长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3): 59-67.DOI: 10.11988/ckyyb.20231425

• 水环境与水生态 • 上一篇    下一篇

融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测

黄学平1(), 辛攀1, 吴永明1,2, 吴留兴1, 邓觅2, 姚忠2()   

  1. 1 南昌工程学院 土木与建筑工程学院,南昌 330099
    2 江西省科学院 微生物研究所,南昌 330096
  • 收稿日期:2023-12-27 修回日期:2024-02-05 出版日期:2025-03-14 发布日期:2025-03-14
  • 通信作者:
    姚 忠(1979-),男,浙江杭州人,副研究员,博士,主要研究方向为湿地生态学和环境资源保护与利用。E-mail:
  • 作者简介:

    黄学平(1973-),女,江西丰城人,教授,博士,研究方向为水环境、水安全、水处理、水资源化。E-mail:

  • 基金资助:
    江西省科技计划项目(20212BCD42014); 江西省科技计划项目(20213AAG01012); 江西省科学院省级科技计划项目包干制试点示范项目(2023YSBG21004); 江西省科学院省级科技计划项目包干制试点示范项目(2021YSBG10003); 江西省科学院省级科技计划项目包干制试点示范项目(2021YSBG22024); 江西省科学院省级财政科研项目(2022YSBG22010)

Predicting Total Nitrogen Concentration in Poyang Lake Using a Hybrid Network Integrating Residual and VMD-TCN-BiLSTM

HUANG Xue-ping1(), XIN Pan1, WU Yong-ming1,2, WU Liu-xing1, DENG Mi2, YAO Zhong2()   

  1. 1 School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099,China
    2 Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
  • Received:2023-12-27 Revised:2024-02-05 Published:2025-03-14 Online:2025-03-14

摘要:

对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)分别为0.03 mg/L、0.049 mg/L、0.992。

关键词: 水质预测, 总氮, 变分模态分解, 时间卷积网络, 集成预测

Abstract:

Accurately and efficiently predicting lake water quality is vital for water resource protection, ecological balance, and economic development. We propose a combined prediction model for total nitrogen (TN) concentration in lakes, integrating modal decomposition, multidimensional feature selection, Temporal Convolutional Network (TCN), self-attention mechanism, bidirectional long short-term memory (BiLSTM), and bidirectional Gate Recurrent Unit (BiGRU). First, we apply variational mode decomposition to break down the original TN sequence into intrinsic mode functions (IMFs) of different frequencies. This step effectively reduces the complexity and non-stationarity of the original sequence. Next, we use the random forest algorithm to select highly correlated features for each IMF. Then, we feed the filtered feature matrix into the TCN-BiLSTM hybrid network equipped with a self-attention mechanism for modeling. This network extracts key temporal information from the hidden data. Finally, to enhance the model’s prediction accuracy, we employ the BiGRU network to learn the detailed features of the residual sequence. We then fuse the residuals with the model’s prediction results to obtain the final prediction value. We conduct an experimental analysis using the water quality data from the Duchang Monitoring Station in Poyang Lake. The results demonstrate that, compared with other models, our model significantly improves the prediction accuracy of TN concentration. Specifically, its mean absolute error (MAE) is 0.03 mg/L, root mean square error (RMSE) is 0.049 mg/L, and coefficient of determination (R2) is 0.992.

Key words: water quality prediction, total nitrogen, variational mode decomposition, temporal convolutional network, integrated prediction

中图分类号: