为了研究葡萄糖酸钠对大掺量石灰石粉水泥浆体水化行为的影响,采用等温量热测试、X射线衍射测试、热重测试研究了胶凝材料体系的水化进程、水化产物种类与含量的变化;并采用相边界成核与生长模型探究了葡萄糖酸钠作用下大掺量石灰石粉水泥水化产物成核与生长机制。结果表明:葡萄糖酸钠能够延缓大掺量石灰石粉水泥的水化,减少水化产物的生成,从而降低其水化程度;另外,葡萄糖酸钠能够降低水化产物早期成核与生长的速率,减小水化产物早期在相边界成核与生长的面积。
Abstract
To investigate the impact of sodium gluconate on the hydration behavior of cement slurry containing high-volume limestone powder, we employed isothermal calorimetry, X-ray diffraction test, and thermogravimetric test to examine the hydration process and changes in types and content of hydration products in the cementitious material system. We also explored the mechanism of nucleation and growth of hydration products under the influence of sodium gluconate by using the phase boundary nucleation and growth model. Results demonstrate that sodium gluconate delays the hydration of cement containing high-volume limestone powder, leading to decreased generation of hydration products and a reduction in overall hydration degree. Moreover, sodium gluconate suppresses the rate of early nucleation and growth of hydration products, resulting in a decreased area of early nucleation and growth at phase boundary.
关键词
葡萄糖酸钠 /
大掺量石灰石粉 /
水化进程 /
水化产物 /
水化动力学
Key words
sodium gluconate /
large dosage limestone powder /
hydration process /
hydration product /
hydration kinetics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SCHNEIDER M, ROMER M, TSCHUDIN M, et al. Sustainable Cement Production—Present and Future[J]. Cement and Concrete Research, 2011, 41(7): 642-650.
[2] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary Cementitious Materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256.
[3] SNELLINGS R, MERTENS G, ELSEN J. Supplementary Cementitious Materials[J]. Reviews in Mineralogy and Geochemistry, 2012, 74(1): 211-278.
[4] 李光伟,邓长军.复掺石灰石粉和粉煤灰在西藏地区水工混凝土中应用试验研究[J].西北水电,2012(5):78-80.(LI Guang-wei,DENG Chang-jun.Study on Tests of Application of Limestone Flour and Flyash in Hydraulic Concrete in Tibet Region[J].Northwest Hydropower,2012(5):78-80.(in Chinese))
[5] 易俊新, 杨 梅, 郑 红. 石灰岩粉掺合料在南欧江五级电站中的应用综述[J]. 江西建材, 2018(9): 11, 13. (YI Jun-xin, YANG Mei, ZHENG Hong. Application of Limestone Powder Admixture in the Fifth Grade Power Station of Yangtze River in Southern Europe[J]. Jiangxi Building Materials, 2018(9): 11, 13.(in Chinese))
[6] MATSCHEI T, LOTHENBACH B, GLASSER F P. The Role of Calcium Carbonate in Cement Hydration[J]. Cement and Concrete Research, 2007, 37(4): 551-558.
[7] DE WEERDT K, BEN HAHA M, LE SAOUT G, et al. Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash[J]. Cement and Concrete Research, 2011, 41(3): 279-291.
[8] ZAJAC M, ROSSBERG A, LE SAOUT G, et al. Influence of Limestone and Anhydrite on the Hydration of Portland Cements[J]. Cement and Concrete Composites, 2014, 46: 99-108.
[9] 魏玉莲.南京长江四桥大体积混凝土施工与控裂关键技术研究[D].南京:东南大学,2018.(WEI Yu-lian.Study on Key Technologies of Mass Concrete Construction and Crack Control of Nanjing Yangtze River Fourth Bridge[D].Nanjing: Southeast University,2018.(in Chinese))
[10] 李家辉, 胡延燕, 范海宏. 葡萄糖酸钠对混凝土强度的影响[J]. 混凝土, 2009(6): 67-69. (LI Jia-hui, HU Yan-yan, FAN Hai-hong. Influence of Glucose-acid Na to the Strength of Concrete[J]. Concrete, 2009(6): 67-69.(in Chinese))
[11] 胡延燕, 黄汝杰, 何廷树, 等. 葡萄糖酸钠对混凝土性能的影响[J]. 混凝土, 2008(5): 71-72. (HU Yan-yan, HUANG Ru-jie, HE Ting-shu, et al. Influence of Glucose-acid Na to the Concrete Property[J]. Concrete, 2008(5): 71-72.(in Chinese))
[12] 廖宜顺, 王思纯, 廖国胜, 等. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 131-136. (LIAO Yi-shun, WANG Si-chun, LIAO Guo-sheng, et al. Effect of Sodium Gluconate on Hydration Process of Calcium Sulfoaluminate Cement[J]. Materials Reports, 2023, 37(9): 131-136.(in Chinese))
[13] MOTA B, MATSCHEI T, SCRIVENER K. Impact of Sodium Gluconate on White Cement-slag Systems with Na2SO4[J]. Cement and Concrete Research, 2019, 122: 59-71.
[14] THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and Simulation of Cement Hydration Kinetics and Microstructure Development[J]. Cement and Concrete Research, 2011, 41(12): 1257-1278.
[15] AVRAMI M.Kinetics of Phase Change. Ⅱ Transformation-time Relations for Random Distribution of Nuclei[J]. The Journal of Chemical Physics,1940,8(2):212-224.
[16] JOHNSON W, MEHL R. Reaction Kinetics in Processes of Nucleation and Growth (Reprinted from Transactions of the American Institute of Mining & Metallurgical Engineers, Vol 135, Pg 416, 1939)[J]. Metallurgical and Materials Transactions A, 2010, 41A(11): 2713-2775.
[17] KOLMOGOROV A N. A Statistical Theory for the Recrystallization of Metals[J]. Izu. Akad. Nauk SSSR, 1937,11(3):355-359.
[18] CAHN J W. The Kinetics of Grain Boundary Nucleated Reactions[J]. Acta Metallurgica, 1956, 4(5): 449-459.
[19] SCHERER G W, ZHANG J, THOMAS J J. Nucleation and Growth Models for Hydration of Cement[J]. Cement and Concrete Research, 2012, 42(7): 982-993.
[20] ZHANG Z, LIU Y, HUANG L, et al. A New Hydration Kinetics Model of Composite Cementitious Materials, Part 1: Hydration Kinetic Model of Portland Cement[J]. Journal of the American Ceramic Society, 2019, Doi: 10.1111/jace.16845.
[21] 张增起. 水泥—矿渣复合胶凝材料水化动力学模型研究[D]. 北京: 清华大学, 2018. (ZHANG Zeng-qi. Study on the Hydration Kinetics Model of Cement-Slag Composite Cementitious Materials[D]. Beijing: Tsinghua University, 2018. (in Chinese))
[22] 朱鹏飞. 调凝剂对掺大掺量石灰石粉水泥水化行为及混凝土绝热温升的影响[D]. 南京: 河海大学, 2021. (ZHU Peng-fei. Impact of Adjusting Admixture on Hydration Behavior of Cement Containing High-volume Limestone Powder and Adiabatic Temperature Rise of Concrete[D]. Nanjing: Hohai University, 2021. (in Chinese))
基金
中央级公益性科研院所基本科研业务费项目(Y422007,Y420017,Y422001)