为了研究钢渣粉对水泥水化的影响,通过水化热和水化动力学模拟,研究了钢渣粉掺量及细度对水泥早期水化进程及反应机理的影响。结果表明:与纯水泥相比,细钢渣粉缩短诱导期,粗钢渣粉延长诱导期;细钢渣掺量为15%时,加速期缩短,细钢渣掺量超过15%时,加速期延长;钢渣比表面积增大或掺量增加,第3放热峰提前;总放热量随钢渣掺量增加而降低,随比表面积增大而提高;结晶成核与晶体生长控制加速期,钢渣粉掺入会降低反应阻力,且反应阻力随着钢渣粉掺量的增加,先降低后略微增大;粗钢渣粉-水泥复合体系的反应阻力大于细钢渣粉-水泥复合体系;稳定期反应进程受扩散控制,扩散阻力随着掺量增加先增大后降低;钢渣粉比表面积增大,扩散阻力增大。研究成果为钢渣粉-水泥复合体系水化动力学进一步的研究提供了基础。
Abstract
A kinetic study by heat evolution is reported to research the influences of the dosages and fineness of steel slag powder on the hydration process and mechanism of cement. Results demonstrate that fine steel slag powder shortens the induction period; on the contrary, coarse steel slag powder delays the induction period. The acceleration period shortens in the presence of 15% dosage of steel slag powder, while elongates when the content of steel slag powder exceeds 15%. Increasing the specific surface area or dosage of steel slag powder brings forward the third exothermic peak. The total heat release declines with the increase of steel slag powder content; but climbs with the increase of specific surface area. The acceleration period is controlled by the nucleation kinetics. In the acceleration period, steel slag powder would cut the reaction resistance; but with the increasing of steel slag powder content, reaction resistance rebounds slightly. Moreover, the reduction of fineness also boosts the reaction resistance. Decay period is controlled by diffusion; diffusion resistance increases and then decreases with the increasing of steel slag powder, and increases with the increasing of specific surface area.The research findings lay a foundation for further studies on the hydration heat and hydrokinetics of steel slag powder-cement composite material.
关键词
钢渣粉-水泥复合体系 /
钢渣粉掺量 /
细度 /
水化热 /
水化动力学
Key words
steel slag powder-cement composite binder /
content of steel slag /
fineness /
hydration heat /
hydration kinetics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHI C. Characteristics and Cementitious Properties of Ladle Slag Fines from Steel Production[J] . Cement and Concrete Research, 2002,32(3): 459-462.
[2] KOUROUNIS S, TSIVILIS S, TSAKIRIDIS P E, et al. Properties and Hydration of Blended Cements with Steelmaking Slag[J] . Cement and Concrete Research, 2007,37(6): 815-822.
[3] ALTUN A, YILMAZ . Study on Steel Furnace Slags with High MgO as Additive in Portland Cement[J] . Cement and Concrete Research, 2002, 32(8): 1247-1249.
[4] 王 强,阎培渝.大掺量钢渣复合胶凝材料早期水化性能和浆体结构[J] .硅酸盐学报, 2008,36(10): 1406-1410.
[5] YAN P, MI G, WANG Q. A Comparison of Early Hydration Properties of Cement-steel Slag Binder and Cement-limestone Powder Binder[J] . Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 193-200.
[6] WANG Q, YAN P, FENG J. A Discussion on Improving Hydration Activity of Steel Slag by Altering Its Mineral Compositions[J] . Journal of Hazardous Materials, 2011, 186(2/3): 1070-1075.
[7] 唐明述, 袁美栖, 韩苏芬,等. 钢渣中MgO、FeO、MnO的结晶状态与钢渣的体积安定性[J] .硅酸盐学报, 1979,(1):37-48,109-111.
[8] WANG Q, YAN P. Hydration Properties of Basic Oxygen Furnace Steel Slag[J] . Construction and Building Materials, 2010, 24(7): 1134-1140.
[9] ZHU X, HOU H, HUANG X, et al. Enhance Hydration Properties of Steel Slag Using Grinding Aids by Mechanochemical Effect[J] . Construction & Building Materials, 2012, 29(4): 476-481.
[10] WU X, ZHU H, HOU X,et al. Study on Steel Slag and Fly Ash Composite Portland Cement[J] . Cement & Concrete Research, 1999,29(7): 1103-1106.
[11] WANG Q, YANG J, YAN P. Cementitious Properties of Super-fine Steel Slag[J] . Powder Technology, 2013, 245(8): 35-39.
[12] 袁润章. 胶凝材料学[M] .武汉:武汉理工大学出版社,1996.
[13] PAGE C L, SHORT N R, ZENG S. Early-age Hydration Kinetics of Polymer-modified Cement[J] . Advances in Cement Research, 1996,(8): 1-9.
[14] TYDLITAT V, MATAS T, CERNY R. Effect of w/c and Temperature on the Early-stage Hydration Heat Development in Portland-limestone Cement[J] . Construction and Building Materials, 2014, 50(2): 140-147.
[15] HAN F, ZHANG Z, WANG D, et al. Hydration Heat Evolution and Kinetics of Blended Cement Containing Steel Slag at Different Temperatures[J] . Thermochimica Acta, 2015, 605: 43-51.
[16] TAYLOR H F W.Cement Chemistry[M] . London: ICE Publishing, 1997.
[17] LIU S, KONG Y, WANG L. A Comparison of Hydration Properties of Cement-low Quality Fly Ash Binder and Cement-limestone Powder Binder[J] . Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 937-943.
[18] 吴学权.矿渣水泥水化动力学的研究[J] .南京工业大学学报(自然科学版), 1987,(2): 23-29.
[19] GRUYAERT E, ROBEORST N, BELIE N D. Study of the Hydration of Portland Cement Blended with Blast-furnace Slag by Calorimetry and Thermogravimetry[J] . Journal of Thermal Analysis and Calorimetry, 2010, 102(3): 941-951.
[20] IONESCUIONESCU D, MEADOWCROFT T R, BARR P V, et al. Early-age Hydration Kinetics of Steel Slags[J] . Advances in Cement Research, 2001, 13(1): 21-30.
[21] KRSTULOVI R, DADI P. A Conceptual Model of the Cement Hydration Process[J] . Cement and Concrete Research, 2000, 30(5): 693-698.
基金
国家重点研发计划项目(2016YFB0303601)