隧道二衬微膨胀注浆料试验研究及性能分析

马立纲, 乔金丽, 孙永涛, 朱祥瑞, 张文彬, 薛桂香

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (7) : 158-166.

PDF(9992 KB)
PDF(9992 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (7) : 158-166. DOI: 10.11988/ckyyb.20221070
水工结构与材料

隧道二衬微膨胀注浆料试验研究及性能分析

  • 马立纲1, 乔金丽2, 孙永涛2, 朱祥瑞2, 张文彬2, 薛桂香3
作者信息 +

Mix Proportion Design and Properties Analysis of Micro-expansion Grouting Material for Secondary Lining of Tunnel

  • MA Li-gang1, QIAO Jin-li2, SUN Yong-tao2, ZHU Xiang-rui2, ZHANG Wen-bin2, XUE Gui-xiang3
Author information +
文章历史 +

摘要

隧道二衬拱顶脱空现象常引发衬砌失效破坏,进而对行车安全产生严重威胁。现有注浆材料无法充分适应带模注浆施工特点,限制了带模注浆应用效果,不利于其进一步推广。针对传统注浆材料高泌水、低结实率以及与二衬混凝土结合性较差等情况,开展了带模注浆微膨胀材料试验研究。以注浆工程中常用的配比为基础,探究在不同硫铝酸盐水泥(SAC)和普通硅酸盐水泥(OPC)之比和不同水胶比下,砂浆的最佳力学性能。在此基础上,调整各种外加剂的用量,使注浆材料具有良好的工作性能,同时研究引气剂掺量对力学性能和抗冻性能的影响规律。试验结果表明,当OPC∶SAC为91∶9和水胶比为0.30时,砂浆的早期强度和后期强度发展良好;当减水剂和增稠剂分别为胶凝材料的0.4%和0.34%时,材料具有较好的工作性能;并在具有良好抗冻性能的同时,其力学性能也没有过大削弱。最后将所研制注浆材料应用于带模注浆工程,验证其适用性和有效性。

Abstract

Hollows in the secondary lining vault often leads to the failure of tunnel lining, posing a serious threat to driving safety. Current grouting materials fail to adequately adapt to the characteristics of mold grouting construction, thereby limiting the effectiveness and the further promotion of this technique. This study aims to address the limitations of traditional grouting materials, such as high water leakage, low solid setting rate, and poor bonding with the secondary lining concrete. To this end, micro-expansion materials were tested and investigated for use in mold grouting construction. On the basis of commonly used ratios in grouting engineering, the optimal mechanical properties of mortar were explored by varying the ratios of sulphoaluminate cement (SAC) and ordinary Portland cement (OPC) and water-binder ratios. The dosage of admixtures was then adjusted to improve working performance, and the influence of air-entraining agent dosage on mechanical properties and frost resistance was studied. Experimental results indicate that an OPC∶SAC ratio of 91∶9 and a water-binder ratio of 0.30 enable the best early and late strength development of mortar. Meanwhile, the optimal dosages of water reducing and thickening agents are found to be 0.4% and 0.34% of cementitious material, respectively, to achieve desirable working performance. In addition, the resulting grouting material exhibits good frost resistance, as well as maintained mechanical properties. Finally, the developed grouting material was applied to a mold grouting project, where its applicability and effectiveness were verified.

关键词

二衬注浆 / 和易性 / 微膨胀 / 配合比 / 减水剂 / 抗冻性

Key words

secondary lining grouting / workability / micro-expansion / mix proportion / water-reducing agent / frost resistance

引用本文

导出引用
马立纲, 乔金丽, 孙永涛, 朱祥瑞, 张文彬, 薛桂香. 隧道二衬微膨胀注浆料试验研究及性能分析[J]. 长江科学院院报. 2023, 40(7): 158-166 https://doi.org/10.11988/ckyyb.20221070
MA Li-gang, QIAO Jin-li, SUN Yong-tao, ZHU Xiang-rui, ZHANG Wen-bin, XUE Gui-xiang. Mix Proportion Design and Properties Analysis of Micro-expansion Grouting Material for Secondary Lining of Tunnel[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 158-166 https://doi.org/10.11988/ckyyb.20221070
中图分类号: TU528   

参考文献

[1] 李 筠,王立川,肖 敏,等.杨家湾隧道衬砌脱空和渗漏水预防[J].隧道建设,2015,35(12):1331-1337.
[2] 王立川, 周东伟, 吴 剑, 等. 铁路隧道复合衬砌脱空的危害分析与防治[J]. 中国铁道科学, 2011, 32(5): 56-63.
[3] LIU C, ZHANG D, ZHANG S. Characteristics and Treatment Measures of Lining Damage: A Case Study on a Mountain Tunnel[J]. Engineering Failure Analysis, 2021, 128: 105595.
[4] 安哲立, 马伟斌, 郭小雄, 等. 新建铁路隧道二次衬砌完成后即拱顶带模注浆的成套技术[J]. 铁道建筑, 2017, 57(11): 48-52.
[5] ZHOU Z, TAN Z, ZHAO J,et al. Experimental Study on Instant Grouting with Formwork for Tunnels[J]. KSCE Journal of Civil Engineering, 2022, 26(1): 394-405.
[6] 龚成明, 朱嘉斌, 佘海龙. 铁路隧道衬砌台车拱顶带模及时注浆工艺研究[J]. 现代隧道技术, 2017, 54(1): 180-185.
[7] OUATTARA D, BELEM T, MBONIMPA M,et al. Effect of Superplasticizers on the Consistency and Unconfined Compressive Strength of Cemented Paste Backfills[J]. Construction and Building Materials, 2018, 181: 59-72.
[8] 何 凯, 严绍军, 赵 莽, 等. 水灰比和偏高岭土掺量对硫铝酸盐水泥基材料性能的影响[J]. 长江科学院院报, 2016, 33(9): 143-148.
[9] 王 博, 闫铁成. 普通硅酸盐-硫铝酸盐水泥复合凝胶体系的制备及性能研究[J]. 功能材料, 2021, 52(7): 79-84.
[10]方绪顺, 徐小平, 陈国新, 等. 减缩型聚羧酸系减水剂的合成及性能研究[J]. 长江科学院院报, 2015,32(12): 134-138.
[11]张士萍,邓 敏,唐明述.混凝土冻融循环破坏研究进展[J].材料科学与工程学报,2008,26(6):990-994.
[12]LAI J, QIU J, FAN H,et al. Freeze-Proof Method and Test Verification of a Cold Region Tunnel Employing Electric Heat Tracing[J]. Tunnelling and Underground Space Technology, 2016, 60: 56-65.
[13]高 焱, 朱永全, 赵东平, 等. 隧道寒区划分建议及保温排水技术研究[J]. 岩石力学与工程学报, 2018, 37(增刊1): 3489-3499.
[14]LAI Y, ZHANG X, YU W,et al. Three-Dimensional Nonlinear Analysis for the Coupled Problem of the Heat Transfer of the Surrounding Rock and the Heat Convection between the Air and the Surrounding Rock in Cold-Region Tunnel[J]. Tunnelling and Underground Space Technology, 2005, 20(4): 323-332.
[15]YE F, QIN N, LIANG X,et al. Analyses of the Defects in Highway Tunnels in China[J]. Tunnelling and Underground Space Technology, 2021, 107: 103658.
[16]GUO J T, ZHANG Z M, TANG Y L,et al. A Simplified Viscoelastic Solution of the Frost Heaving Force of Cavity Water Behind Tunnel Linings[J]. Advances in Civil Engineering, 2020, 2020: 1-8.
[17]刘骏霓, 路建国, 高佳佳, 等. 水工混凝土冰冻害机理及抗冻性能研究进展[J]. 长江科学院院报, 2023, 40(3): 158-165.
[18]LI T. Damage toMountain Tunnels Related to the Wenchuan Earthquake and some Suggestions for Aseismic Tunnel Construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 297-308.
[19]李福海, 李 瑞, 姜怡林, 等. 隧道二次衬砌脱空带模注浆对衬砌结构受力影响的试验研究[J]. 现代隧道技术, 2021, 58(5): 147-158.
[20]魏 涛, 张 健. 水泥环氧复合灌浆技术研究及应用[J]. 长江科学院院报, 2021, 38(12): 1-5, 11.
[21]许 可. 盾构泥砂高性能注浆材料的研究与应用[D]. 武汉: 武汉理工大学, 2011.
[22]MA B, PENG Y, TAN H,et al. Effect of Hydroxypropyl-Methyl Cellulose Ether on Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer[J]. Construction and Building Materials, 2018, 160: 341-350.
[23]JGJ/T 70—2009,建筑砂浆基本性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.
[24]GB/T 50448—2015,水泥基灌浆材料应用技术规范[S]. 北京: 中国建筑工业出版社, 2015.
[25]铁道部科学技术司科技基[2008]74号.客运专线铁路CRTSⅡ型板式无砟轨道水泥乳化沥青砂浆暂行技术条件 [S].北京:中国铁道科学研究院,2008.
[26]GB/T 17671—2021,水泥胶砂强度检验方法(ISO法)[S]. 北京: 中国标准出版社, 2021.
[27]GB 23440—2009,无机防水堵漏材料[S]. 北京: 中国标准出版社, 2010.
[28]章 鹏. 硫铝酸盐水泥性能的提升及其应用研究[D]. 长沙: 湖南大学, 2017.
[29]裴 涛.普通硅酸盐水泥-硫铝酸盐水泥复合胶凝体系混凝土的性能研究[D].淮南:安徽理工大学,2020.
[30]马保国, 谭洪波,董荣珍,等. 聚羧酸减水剂缓凝机理的研究 [J]. 长江科学院院报, 2008, 25(6): 93-95.
[31]彭 毅. 增稠剂与聚羧酸减水剂的协同作用对水泥浆体流变性的影响[D]. 武汉: 武汉理工大学, 2019.
[32]范沈抚. 掺引气剂混凝土性能的研究 [J]. 混凝土与水泥制品,1991(1): 11-13.
[33]高 辉, 张 雄, 张永娟. 化学外加剂对混凝土气孔结构及水化的影响[J]. 功能材料, 2013(23): 3416-3420.
[34]刘从振, 范英儒, 王 磊, 等. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[35]XU Y, YUAN Q, DAI X,et al. Improving the Freeze-Thaw Resistance of Mortar by a Combined Use of Superabsorbent Polymer and Air Entraining Agent[J]. Journal of Building Engineering, 2022, 52: 104471.
[36]唐思伟, 石照辉, 禹化伟. 隧道衬砌拱顶脱空与空洞回填工艺优化[J]. 山西建筑, 2021, 47(3): 143-145.
[37]王文卓, 梁庆国, 贾桂云, 等. 隧道初支与二衬间接触压力统计分析[J]. 地下空间与工程学报, 2021, 17(5): 1586-1597.

基金

河北省交通运输厅科技项目(YC-201905)

PDF(9992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/