斜桩周围的土体自重应力场不对称于斜桩轴线,其承载变形特性比较复杂。在砂土地基中开展了斜桩模型试验,研究了斜桩在垂直于其倾斜方向的水平偏心荷载作用下的承载变形特性,分析了桩身表面粗糙程度、桩身倾角对斜桩承载变形特性及桩身内力分布规律的影响。试验结果表明,在垂直于斜桩倾斜方向的水平偏心荷载作用下,斜桩桩顶水平位移很小,而扭转变形较大,其承载力取决于扭转变形。垂直于斜桩倾斜方向的水平偏心荷载不仅会使斜桩弯曲,还会使斜桩沿其纵向轴线拉伸。斜桩桩身最大弯矩超过作用于桩顶的扭矩约10%~30%,斜桩全长受拉,但桩身轴力很小,最大轴力约为桩顶水平荷载的5%。斜桩桩身表面作用有纵向摩阻力及环向摩阻力。斜桩桩身上部纵向摩阻力为正摩阻力,下部则为负摩阻力,中性点的位置约在相对深度Z/L=0.3处,纵向平均摩阻力远小于相同深度处的环向平均摩阻力。
Abstract
The bearing deformations of battered piles are intricate due to the asymmetrical stress field exerted by the self-weight of the surrounding soil. Model tests were conducted on battered piles embedded in sandy soils to investigate their bearing deformation behavior under horizontal eccentric loads perpendicular to their inclination direction. The study also revealed the effects of pile surface roughness and pile shaft inclination angle on the bearing deformation characteristics of battered piles, as well as the internal forces acting on the pile shaft. Test results manifest that under horizontal eccentric loads perpendicular to the inclined direction of battered piles, the horizontal displacement of the pile head is minimal, while torsional deformation is significant. The bearing capacity of battered piles primarily relies on their torsional bearing capacity. When a horizontally applied eccentric load is perpendicular to the pile’s inclination, the battered pile not only undergoes bending but also experiences tension along its longitudinal axis. The maximum bending moment induced in the battered pile shaft by the horizontal load exceeds the torque moment applied at the pile top by approximately 10% to 30%. The entire battered pile shaft is subjected to tension, although the tension is relatively small, with a maximum tensile force equal to around 5% of the horizontal load applied at the pile head. The pile shaft is also subjected to longitudinal and circumferential skin frictions. The upper shaft exhibits positive longitudinal skin friction, while the lower shaft exhibits negative friction, with the neutral point located at a depth of Z/L=0.3. The average longitudinal skin friction is considerably smaller than the average circumferential skin friction at the same depth.
关键词
斜桩 /
模型试验 /
扭转承载力 /
水平偏心荷载 /
纵向摩阻力 /
环向摩阻力
Key words
battered pile /
model test /
torsional capacity /
horizontal eccentric loads /
longitudinal skin friction /
circumferential skin friction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 骞, 叶 震, 蔡建国, 等. 特高压长悬臂输电塔结构风振扭转响应[J]. 中南大学学报(自然科学版), 2020, 51(4): 1108-1115.
[2] 顾 明. 水平循环及偏心荷载作用下群桩性状模型试验研究[D]. 杭州: 浙江大学, 2014.
[3] MEYERHOF G G, YALCIN A S. Behaviour of Flexible Batter Piles under Inclined Loads in Layered Soil[J]. Canadian Geotechnical Journal, 1993, 30(2): 247-256.
[4] MEYERHOF G G,RANJAN G.The Bearing Capacity of Rigid Piles under Inclined Loads in Sand. II: Batter Piles[J]. Canadian Geotechnical Journal,1973,10(1):71-85.
[5] ZHANG L, MCVAY M C, LAI P W. Centrifuge Modelling of Laterally Loaded Single Battered Piles in Sands[J]. Canadian Geotechnical Journal, 1999, 36(6): 1074-1084.
[6] 吕凡任. 倾斜荷载作用下斜桩基础工作性状研究[D]. 杭州: 浙江大学, 2004.
[7] 曹卫平, 夏 冰, 赵 敏, 等. 砂土中水平受荷斜桩的p-y曲线及其应用[J]. 岩石力学与工程学报, 2018, 37(3): 743-753.
[8] 龚 健, 陈仁朋, 陈云敏, 等. 微型桩原型水平荷载试验研究[J]. 岩石力学与工程学报, 2004, 23(20): 3541-3546.
[9] ZHANG L M, MCVAY M C, HAN S J, et al. Effects of Dead Loads on the Lateral Response of Battered Pile Groups[J]. Canadian Geotechnical Journal, 2002, 39(3): 561-575.
[10] 顾 明, 陈仁朋, 孔令刚, 等. 水平偏心荷载下斜桩群桩受力性状的离心机模型试验[J]. 岩土工程学报, 2014, 36(11): 2018-2024.
[11] BOLTON M D, GUI M W, GARNIER J, et al. Centrifuge Cone Penetration Tests in Sand[J]. Géotechnique, 1999, 49(4): 543-552.
[12] CRAIG W H, SABAGH S K. Stress-Level Effects in Model Tests on Piles[J]. Canadian Geotechnical Journal, 1994, 31(1): 28-41.
[13] CRAIG W H. Simulation of Foundations for Offshore Structures Using Centrifuge Modelling[M] //Developments in Soil and Foundation Engineering—Model Studies. London: Elsevier,1983: 1-27.
[14] GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社,2019.
[15] 谭国焕, 张佑启, 杨 敏. 松砂土中桩侧表面粗糙程度对桩承载力的影响[J]. 岩土工程学报, 1992, 14(2): 50-54.
[16] 方 磊, 李广信, 黄 锋. 室内土工模型试验的新方法: 桩基渗水力土工模型试验[J]. 高校地质学报, 1997, 3(4): 451-457.
[17] 黄 锋, 黄文峰, 李广信, 等. 不同受载方式下桩侧阻的渗水力模型试验研究[J]. 岩土工程学报, 1998, 20(2): 10-14.
[18] JGJ 94—2008,建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.
[19] 赵明华, 李微哲, 杨明辉, 等. 成层地基中倾斜偏心荷载下基桩位移特性室内模型试验研究[J]. 土木工程学报, 2006, 39(12): 95-99.
[20] 邹新军, 丁仕进, 赵灵杰. 水平力(H)-扭矩(T)组合受荷桩承载特性模型试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(3): 126-133.
[21] 曹卫平, 陶 鹏, 赵 敏, 等. 砂土中循环荷载与单调荷载组合作用下斜桩水平承载变形特性[J]. 长安大学学报(自然科学版), 2020, 40(3): 11-21.
[22] CONTE E, TRONCONE A, VENA M. Behaviour of Flexible Piles Subjected to Inclined Loads[J]. Computers and Geotechnics, 2015, 69: 199-209.
[23] 赵 爽, 吴君涛, 张日红, 等. 砂土中斜桩单桩水平承载与变形特性数值分析[J]. 中南大学学报(自然科学版), 2022, 53(2): 579-588.
[24] WANG J, ZHOU D, JI T, et al. Horizontal Dynamic Stiffness and Interaction Factors of Inclined Piles[J]. International Journal of Geomechanics, 2017, 17(9): 04017075.
[25] 曹卫平, 赵 呈, 李 元, 等. 上拔荷载对斜桩水平承载性状影响的试验研究[J]. 长江科学院院报, 2020, 37(8): 82-88.
[26] 樊文甫,曹卫平.带承台倾斜单桩水平承载变形性状数值分析[J].长江科学院院报,2016,33(10):121-125.
[27] 马庆华, 邵 勇, 朱进军. 水平荷载下承台-倾斜桩工作性状的数值分析[J]. 长江科学院院报, 2015, 32(11): 62-65.
[28] 任瑞虹. 竖向荷载作用下斜桩承载变形特性有限元分析[J]. 长江科学院院报, 2017, 34(5): 99-102, 108.
[29] 邵红才, 吕凡任, 金耀华, 等. 竖向荷载作用下对称双斜桩基础水平承载力模型试验研究[J]. 长江科学院院报, 2014, 31(6): 65-68.
基金
陕西省自然科学基础研究计划项目(2019JM-006)