河流、湖泊、水库等内陆水体水温对水生生物的生长及周边生态环境具有重要意义,发展水温原型观测是进行理论研究和工程应用的基础。现有内陆水体表层水温测量,主要依靠温度计人工目视观测或水文测站仪器自动观测,2种方法在面对高频次或无固定测站水域观测时,存在仪器设备运行维护困难、监测数据不连续诸多限制。为提高水温测量的稳定可靠性,并减少水位波动对自动观测的不利影响,实验设计了新型红外水温观测系统,并对其进行比测验证及数值修正。原型观测结果显示,修正后的红外水温监测数值超过85%的相对误差≤5%,80%以上绝对温差≤1 ℃,红外水温系统性能稳定,可靠度高,可用于内陆水体表层水温观测。
Abstract
The water temperature of rivers, lakes, reservoirs, and other inland water bodies plays a crucial role in the growth of aquatic organisms and the surrounding ecological environment. The development of a water temperature observation system serves as the basis for theoretical research and engineering applications. Current surface water temperature measurement in inland waters mainly relies on manual visual observation using thermometers or automatic observation with hydrological station instruments. However, these methods have limitations such as equipment operation and maintenance difficulties, as well as discontinuous monitoring data when applied in high-frequency or non-fixed hydrological observations. To improve the stability and reliability of water temperature measurement and reduce the adverse effect of water level fluctuation on automatic observation, this paper presents the design and implementation of a novel infrared water temperature observation system. A comprehensive series of comparison tests and numerical corrections were conducted to validate the performance of the proposed method. The results of prototype observation demonstrate that over 85% of the relative errors of the corrected infrared water temperature are below 5%, and more than 80% of the absolute temperature differences are less than 1 ℃. In conclusion, the infrared water temperature measurement system demonstrates stable performance and high reliability. It proves to be an effective method for observing the surface water temperature of inland water bodies.
关键词
表层水温监测 /
红外辐射 /
对比测试 /
准确性评价 /
内陆水体
Key words
surface water temperature measurements /
infrared radiation /
comparative test /
accuracy evaluation /
inland water
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HANNAH D M, MALCOLM I A, SOULSBY C, et al. A Comparison of Forest and Moorland Stream Microclimate, Heat Exchanges and Thermal Dynamics[J]. Hydrological Processes, 2008, 22(7): 919-940.
[2] BONNEMA M,HOSSAIN F,NIJSSEN B,et al. Hydropower’s Hidden Transformation of Rivers in the Mekong[J]. Environmental Research Letters, 2020, 15(4): 044017.
[3] QIU R, WANG Y, RHOADS B, et al. River Water Temperature Forecasting Using a Deep Learning Method[J]. Journal of Hydrology, 2021, 595: 126016.
[4] 邹 珊, 李 雨, 陈金凤, 等. 长江攀枝花—宜昌江段水温时空变化规律[J]. 长江科学院院报, 2020, 37(8): 35-41, 48.
[5] 蒋 博,王福山,沈 忱,等.澜沧江支流补远江对干流水温影响研究[J].水力发电学报,2019,38(2):82-88.
[6] 胡 培, 陈晓宏. 东江三大水库联合调度下惠州河段水温变化响应研究[J]. 水文, 2013, 33(1): 38-43.
[7] 张 陵,郭文献,李泉龙.长江中下游水电开发对河流水文情势的影响研究[J].中国农村水利水电,2019(9):94-99.
[8] 毕晓静, 陆 颖, 保文秀, 等. 功果桥水库坝下河道水温原型观测及分析[J]. 水电能源科学, 2019, 37(4): 56-58, 135.
[9] 张 鹏,黎兰毅敏,范臣臣.温排水对长江安徽段水温的影响模拟[J].水资源与水工程学报,2021,32(1):51-56.
[10] 常福宣, 洪晓峰. 长江源区水循环研究现状及问题思考[J]. 长江科学院院报, 2021, 38(7): 1-6.
[11] 张建民, 黄国立, 董进东. 全天候浮舟式云端自记水温计简介[J]. 科技视界, 2018(26): 49-50.
[12] 张宗敏, 金 哲, 晋 涛, 等. 水温自记遥测仪器的安装与应用[J]. 河南科技, 2019(32): 109-111.
[13] 李旭茂,刘耀炜,张 磊,等.井水温观测分析中的水-热动力学研究综述[J]. 地震, 2020, 40(1): 34-51.
[14] 陆 颖, 李 亚, 杨福平, 等. 一种水温自动监测及遥测装置: 中国,CN109959470A[P]. 2019-07-02.
[15] 乔 雨, 杨 宁, 谭 鹏, 等. 大体积混凝土红外测温影响因素研究与工程应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 730-737.
[16] 孙保燕, 陈 文. 三维激光扫描和红外检测融合技术的工程应用[J]. 长江科学院院报,2020,37(2):170-173, 178.
[17] 罗益辉, 许万忠, 文继东, 等. 昆明安宁温泉边坡稳定性分析及加固效应研究[J]. 地质灾害与环境保护, 2019, 30(3): 68-76.
[18] 董林垚, 陈建耀, 付丛生, 等. 珠海小规模溪流水温与气温关系研究[J]. 水文, 2011, 31(1): 81-87.
[19] YANG J,REN J,SUN D,et al. Understanding Land Surface Temperature Impact Factors Based on Local Climate Zones[J]. Sustainable Cities and Society,2021,69:102818.
[20] 宋瑞德, 张广洲, 姚德贵, 等. 交直流并行线路无线电干扰与温湿度相关性研究[J]. 水电能源科学, 2020, 38(6): 185-188, 153.
[21] 李艺珍, 岳春芳, 曹 伟. 基于滑动Copula函数的金沟河流域径流-气温关系变异诊断[J]. 长江科学院院报, 2020, 37(11): 33-39.
基金
国家自然科学基金项目(32060831);华能澜沧江水电股份公司科研项目(NZDDC2018/D01,HY2020/S9);云南省万人计划项目(QNBJ2018166)