为了探究2003—2021年中国可降水量时空分布及其变化趋势特点,采用美国国家航空航天局地球观测系统卫星Aqua上AIRS探测仪反演的AIRS3STM中可降水量数据,通过线性拟合、Mann-Kendall检验和经验正交函数分析法,分析其时空变化影响因素。结果表明:①中国日间、夜间年际可降水量呈上升趋势,日间上升速率为0.044 (kg/m2)/a,夜间上升速率为0.062 (kg/m2)/a,并得出日间、夜间突变点发生时间分别是2014年和2008年。②中国日间、夜间四季变化均为上升趋势,夏季变化速率最大,春季、冬季变化速率较低,仅日间夏季和夜间的夏、秋和冬季通过了α=0.05的显著性检验。③中国日间可降水量和地表温度空间分布与纬度呈负相关,纬度越低,可降水量、地表温度越高,华南地区可降水量较高,西北地区偏低,利用EOF分析法选取部分典型区域也验证了以上规律。④可降水量与地表温度呈正相关,地表温度越高,其上升趋势越明显。研究成果对中国的气候、地形分布以及自然灾害预警均有一定参考意义。
Abstract
The precipitation data from AIRS3STM inverted by AIRS detector on NASA's Aqua satellite was adopted to analyze the spatio-temporal distribution and variations of available precipitation in China from 2003 to 2021. Linear fitting, Mann-Kendall test and empirical orthogonal function analysis were employed to reveal the influencing factors of spatio-temporal change. Results reveal that 1) interannual available precipitation during daytime and nighttime in China has been increasing with daytime rising rate of 0.044 kg·m-2·a-1 and nocturnal rising rate of 0.062 kg·m-2·a-1. Daytime mutation point occurred in 2014 while nocturnal mutation point occurred in 2008. 2) Changes in all four seasons during day and night show upward trends with summer change rate being highest while change rate in spring and winter is low. Only changes in summer daytime, summer, autumn and winter nighttime passed significance test of α=0.05. 3) Spatial distribution of daytime available precipitation and surface temperature in China is negatively correlated with latitude. Lower latitude sees higher available precipitation and surface temperature. South China has larger available precipitation than northwest China. EOF analysis on some typical areas also verifies this law. 4) Amount of available precipitation is positively correlated with surface temperature and such trend grows more obvious with higher surface temperature.
关键词
可降水量 /
地表温度 /
时空规律 /
MK趋势分析 /
AIRS
Key words
available precipitation /
surface temperature /
spatial and temporal rules /
MK trend analysis;AIRS
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙 雯,王 月,杨聪剑,等.西江流域夏季降水时空变化特征及成因分析.人民珠江,2021,42(7):1-8.
[2] 颜 笑.中国区域水汽时空变化分析.武汉:武汉大学,2018.
[3] 郑 宁,刘 琼,黄 观,等.新疆三大山区可降水量时空分布特征.干旱区地理,2019,42(1):77-84.
[4] AYANTOBO O O, WEI J, WANG G. Modeling Joint Relationship and Design Scenarios between Precipitation, Surface Temperature, and Atmospheric Precipitable Water over Mainland China. Earth and Space Science, Doi: 10. 1029 /2020EA001513.
[5] 姚宜斌,雷祥旭,张 良,等.青藏高原地区1979—2014年大气可降水量和地表温度时空变化特征分析.科学通报,2016,61(13):1462-1477.
[6] 李继清,陈思雨.基于ESMD的西江流域降水时空变化特征分析.中国农村水利水电,2021(6):61-68.
[7] 周思儒,信忠保.近20年青藏高原水资源时空变化研究.长江科学院院报,2021(9):1-10.
[8] 周 珍.基于Mann-Kendall的嘉陵江流域降水量时空分布规律研究.水资源开发与管理,2021(3):25-28,42.
[9] 马 骏,朱国平,李 焰.基于Mann-Kendall法的房山区降水量时空分布变化趋势分析.水资源开发与管理,2021 (1):47-51,56.
[10] 张 璐,刘 鹏,张文君,等.中国不同区域气候条件对冬季雾日形成的差异性分析.气候与环境研究,2019,24(5): 585-596.
[11] 刘艳霞,冯 莉,田慧慧,等.中国气候舒适度时空分布特征分析.地球信息科学学报,2020,22(12):2338-2347.
[12] 郭嘉兵,李金文,马金珠,等.甘肃省1961—2018年降水量时空分布与变化研究.灌溉排水学报,2021,40(3): 142-148.
[13] 王奕丹,杨慧玲,孙 跃,等.1998—2017年三江源地区水汽和云水状况的时空分布.成都信息工程大学学报,2021,36(2):174-184.
[14] 夏中烨,李铁键,解宏伟,等.基于AIRS数据的三江源晴空大气水汽含量分布与变化规律研究.水利水电技术,2020,51(11):49-56.
基金
安徽高校自然科学研究重点项目(KJ2019A0103);空间天气学国家重点实验室开放课题资助项目(201909)