桥墩的局部冲刷导致河床形态变化和桥墩基础埋深减小是桥梁水毁的主要原因。在大涡模拟(Large Eddy Simulation,LES)的基础上结合水流运动方程和泥沙运动的动理学理论系统地对桥墩基础处的水流冲刷问题进行全时段全方位的三维数值模拟。得到了桥墩基础处的湍流流场流线图及河床形态变化的高程图。重点研究了水流流速和河床颗粒中值粒径对桥墩周边局部冲刷的影响。结果表明:冲刷坑的深度随着初始流速的增大而增加,且冲刷坑形成速度加快;冲刷坑的深度随着河床颗粒中值粒径的减小而增大,但是当颗粒的中值粒径小到一定程度时,由于泥沙颗粒之间的黏聚力增大导致冲刷坑的深度反而减小。
Abstract
The change in riverbed morphology and the reduction of bridge pier foundation's buried depth resulted from local scour around the pier are major causes of bridge failure. An all-time and all-round 3D numerical simulation on the flow scour around the foundation of bridge pier is carried out by using LES (Large Eddy Simulation) in association with the equation of flow motion and the theory of sediment dynamics. The streamlines of eddy flow around the bridge pier foundation and the contours of riverbed elevation were acquired. The effects of flow velocity and median particle size on local scour around bridge pier were examined. The numerical simulation results suggest that the depth of the scour pit increases with the increase of the initial flow velocity and the formation of scour pit accelerates in the meantime. Scour pit depth also extends with the reduction of riverbed's median particle size; but when the median particle size is small to a certain extent, the depth of scour pit shrinks because of the increasing of cohesion between sediment particles.
关键词
桥墩冲刷 /
大涡模拟 /
水流流速 /
冲刷坑深度 /
颗粒中值粒径
Key words
scour around bridge pier /
large eddy simulation /
flow velocity /
depth of scour pit /
median particle size
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHIROLE A M. Development and Implementationof New York States Comprehensive Bridge Safety Assurance Program[C]//Proceedings of the Fourth International Bridge Engineering Conference. San Francisco, California. August 28-30, 1995: 187-196.
[2] 易仁彦. 桥梁坍塌事故的原因和风险分析[J].养护与管理,2016,62(4):22-26.
[3] OLSEN N R B, MELAAEN M C. Three-dimensional Calculation of Scour around Cylinders[J]. Journal of Hydraulic Engineering, 1993, 119(9): 1048-1054.
[4] HOFFMANS G J C M, BOOIJ R. Two-dimensional Mathematical Modellingof Local-scour Holes[J]. Journal of Hydraulic Research, 1993, 31(5): 615-634.
[5] 凌建明, 林小平, 赵鸿铎. 圆柱形桥墩附近三维流场及河床局部冲刷分析[J]. 同济大学学报(自然科学版), 2007(5): 582-586.
[6] KHOSRONEJAD A, KANG S, SOTIROPOULOS F. Experimental and Computational Investigationof Local Scour around Bridge Piers[J]. Advances in Water Resources, 2012, 37: 73-85
[7] 李 玲, 晏智锋, 刘昭伟. 浅水圆柱绕流流动模式探[J]. 长江科学院院报, 2010, 27(10): 30-34,54.
[8] 祝志文, 刘震卿. 圆柱形桥墩周围局部冲刷的三维数值模拟[J]. 中国公路学报, 2011(2): 42-48.
[9] 李绍武, 杨 航. 水流作用下圆柱局部冲刷三维数值模拟[J]. 水道港口, 2018, 39(5): 7-15.
[10] 龙 庆.挟沙水流下桥墩局部冲刷数值模拟研究[D].合肥:合肥工业大学,2020.
[11] 王顺意, 牟 力, 魏 凯, 等. 不同水力条件下圆柱桥墩局部冲刷试验研究[J]. 防灾减灾工程学报, 2020, 40(3): 425-431.
[12] ROULUND A, SUMER B M, FREDS E J, et al. Numerical and Experimental Investigation of Flow and Scour around a Circular Pile[J]. Journal of Fluid Mechanics, 2005, 534: 351-401.
[13] 张曙光, 尹进步, 张根广. 基于Flow-3D的圆柱形桥墩局部冲刷大涡模拟[J]. 泥沙研究, 2020, 45(1): 70-76.
[14] MELVILLE B W, RAUDKIVI A J. Flow Characteristics in Local Scour at Bridge Piers[J]. Journal of Hydraulic Research, 1977, 15(4): 373-380.
[15] SMAGORINSKY J S. SMAGORINSKY J. General Circulation Experiments with the Primitive Equations. Monthly Weather Review 91, 99-165[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[16] 钟德钰, 王光谦, 吴保生. 泥沙运动的动理学理论[M]. 北京:科学出版社, 2015.
[17] MASTBERGEN D R, BERG J H V D. Breaching in Fine Sandsand the Generation of Sustained Turbidity Currents in Submarine Canyons[J]. Sedimentology, 2010, 50(4): 625-637.
[18] SOULSBY R L. Bedload Transport Chapter 9 Dynamics of Marine Sand[M]. London: Thomas Telford Publications, 1997.
[19] MEYER-PETER E, MÜLLER R. Formulas for Bed-load Transport[C]//Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. Delft, June 7, 1948: 39-64.
[20] RIJN V, LEO C. Sediment Transport, Part I: Bed Load Transport[J]. Journal of Hydraulic Engineering, 1985, 110(10): 1431-1456.
[21] CHIEN N, WAN Z. Mechanics of Sediment Transport [M].Oxford, England: Pergamon Press, 1977.
[22] HIRT C W, SICILIAN J M. A Porosity Techniquefor the Definition of Obstacles in Rectangular Cell Meshes[C]//Proceedings Fourth International Conference on Numerical Ship Hydrodynamics. January 1, 1985.
[23] 王永学.VOF方法数模直墙式建筑物前的波浪破碎过程[J].自然科学进展(国家重点实验室通讯),1993(6):553-559.
[24] 王 飞, 张 彬, 齐剑峰. 桥墩局部冲刷发展过程的三维动网格模拟[J]. 南水北调与水利科技, 2017, 15(2): 132-137.
[25] 赵 凯. 桥墩局部冲刷模拟试验研究[D].南京:南京水利科学研究院, 2009.
基金
国家自然科学基金面上项目(51679003);北京市科学技术委员会重大专项基金项目(Z16110000 2216001)