分层强剪切环境下减阻板对圆柱减阻效应研究

王寅, 傅依达, 王春凌, 张洁, 徐明, 计勇

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (7) : 71-77.

PDF(10336 KB)
PDF(10336 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (7) : 71-77. DOI: 10.11988/ckyyb.20210256
水力学

分层强剪切环境下减阻板对圆柱减阻效应研究

  • 王寅1, 傅依达2, 王春凌3, 张洁1, 徐明1, 计勇1
作者信息 +

Drag Reduction Effect of Splitter Plate on Cylinder in Stratified Strong Shear Environment

  • WANG Yin1, FU Yi-da2, WANG Chun-ling3, ZHANG Jie1, XU Ming1, JI Yong1
Author information +
文章历史 +

摘要

由于上下水层流动反向,柱体在分层流环境中与密度均一流环境中受力差别较大。将密度均一流环境下上游减阻板对柱体减阻的概念引入分层流环境下的圆柱受力研究中,建立三维数值模型,采用大涡模拟(LES)技术,研究内波环境下圆柱的减阻效应。结果表明:在上层水体中,减阻板对柱体受力影响较大;在下层水体中,减阻板几乎不起作用。减阻板背部的漩涡形态是影响柱体减阻效应的根本原因。减阻参数(阻塞比l/D及“板-柱”间距s/D)决定了柱周漩涡结构特征,直接影响减阻效果。引入减阻比BR量化了减阻效果,采用回归分析拟合出BRs/l的经验公式。需将减阻参数控制在合理范围内,避免发生“减阻过度”。研究成果对提高近岸及河口建筑物墩柱安全有重要意义。

Abstract

Forces on cylinder in stratified flow environment differs notably with those in uniform density flow due to the opposite velocity directions of two layers.A splitter plate deployed upstream of the cylinder in uniform density flow with its frontal face normal to the wave propagation is employed to explore the reduction of forces on an erected cylindrical pile.A 3-D numerical wave flume model is established to investigate the reduction of forces acting on cylinder through Large-Eddy Simulation (LES) approach.Results unveil that splitter plate has prominent influence on the force distribution of the pile in the upper layer,but hardly any effect on the counterpart in the lower layer.The pattern of vortex structure behind the splitter plate plays a fundamental role in reducing the drag forces on pile.Key parameters blockage ratio l/D and plate position ratio s/D characterize the feature of vortex structure around the pile.The reduction effect is quantified by forces reduction ratio BR,and an empirical formula between BR and s/l is fitted by regression analysis.The parameters of splitter plate should be controlled at an appropriate level to prevent from over-reduction.

关键词

内波 / 柱体 / 减阻效应 / 大涡模拟 / 受力特性

Key words

internal wave / cylinder / drag reduction effect / large eddy simulation / force behaviors

引用本文

导出引用
王寅, 傅依达, 王春凌, 张洁, 徐明, 计勇. 分层强剪切环境下减阻板对圆柱减阻效应研究[J]. 长江科学院院报. 2022, 39(7): 71-77 https://doi.org/10.11988/ckyyb.20210256
WANG Yin, FU Yi-da, WANG Chun-ling, ZHANG Jie, XU Ming, JI Yong. Drag Reduction Effect of Splitter Plate on Cylinder in Stratified Strong Shear Environment[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(7): 71-77 https://doi.org/10.11988/ckyyb.20210256
中图分类号: TV131.4   

参考文献

[1] KURKINA O,ROUVINSKAYA E,TALIPOVA T,et al.Propagation Regimes and Populations of Internal Waves in the Mediterranean Sea Basin[J].Estuarine,Coastal and Shelf Science,2017,185:44-54.
[2] 谢奇珂,刘昭伟,陈永灿,等.河流型深水库出流日调节诱导下的内波特征[J].水力发电学报,2019,38(1):41-51.
[3] OSBORNE A R,BURCH T L.Internal Solitons in the Andaman Sea[J].Science,1980,208(4443):451-460.
[4] 杨进先,胡 勇.跨海大桥桥渡设计关键技术探讨[J].桥梁建设,2010(5):60-63.
[5] WANG X,ZHOU J F,WANG Z,et al.A Numerical and Experimental Study of Internal Solitary Wave Loads on Semi-submersible Platforms[J].Ocean Engineering,2018,150:298-308.
[6] ZHOU L,CHENG M,HUNG C K.Suppression of Fluid Force on a Square Cylinder by Flow Control[J].Journal of Fluids & Structures,2005,21(2):151-167.
[7] 余英俊,胡 晓,石小涛,等.基于简易PIV的圆柱绕流压力场重构[J].长江科学院院报,2019,36(6):42-53.
[8] 韩韶英.带轴向板条圆柱绕流数值模拟研究[D].青岛:中国海洋大学,2011.
[9] ACHENBACH E.Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-flow Up to Re= 5×106[J].Journal of Fluid Mechanics,1968,34(4):625-639.
[10] GU F,WANG J S,QIAO X Q,et al.Pressure Distribution,Fluctuating Forces and Vortex Shedding Behavior of Circular Cylinder With Rotatable Splitter Plates[J].Journal of Fluids & Structures,2012,28(1):263-278.
[11] MOREL T,BOHN M.Flow over Two Circular Disks in Tandem[J].Journal of Fluids Engineering,1980,102(1):104-111.
[12] LESAGE F,GARTSHORE I S.A Method of Reducing Drag and Fluctuating Side Force on Bluff Bodies[J].Journal of Wind Engineering & Industrial Aerodynamics,1987,25(2):229-245.
[13] WANG Y,WANG L L,ZHU H,et al.A Numerical Study of the Forces on Two Tandem Cylinders Exerted by Internal Solitary Waves[J].Mathematical Problems in Engineering,2016(1):1-15.
[14] HUTTER K.Nonlinear Internal Waves in Lakes[M].Heidelberg:Springer,2012:9-10.
[15] GERMANO M,PIOMELLI U,MOIN P,et al.A Dynamic Subgrid-scale Eddy Viscosity Model[J].Physics of Fluids A:Fluid Dynamics,1991,3(3):1760-1765.
[16] LIN Z H,SONG J B.Numerical Studiesof Internal Solitary Wave Generation and Evolution by Gravity Collapse[J].Journal of Hydrodynamics,2012,24(4):541-553.
[17] LI X Y,BING R,YU W G,et al.Numerical Simulation of Hydrodynamic Characteristics on an Arx Crown Wall Using Volumn of Fluid Method Based on BFC[J].Journal of Hydrodynamics,2011,23(6):767-776.
[18] 胡 晗,杨 伟,侯冬梅.琴键堰水力特性数值模拟[J].长江科学院院报,2019,36(4):60-66.
[19] YU Z Z,WANG L L.Factors Influencing Thermal Structure in a Tributary Bay of Three Gorges Reservoir[J].Journal of Hydrodynamics,2011,23(4):407-415.
[20] CHEN Y X.Flow Simulation of Car Air Conditioner Duct Based on SIMPLE Algorithm[J].Mechanical Engineer,2008,Corpus ID:114350364.
[21] FERZIGER J H,PERIC M,STREET R L.Computational Methods for Fluids Dynamics[M].Switzerland:Springer,2002.
[22] ZHU H,WANG L L,TANG H W.Large-eddy Simulation of the Generation and Propagation of Internal Solitary Waves[J].Science China,2014,57(6):1128-1136.
[23] ZHU H,WANG L L,AVITAL E J,et al.Numerical Simulation of Shoaling Broad-crested Internal Solitary Waves[J].Journal of Hydraulic Engineering,2017,143(6):04017006.
[24] ZHU H,WANG L L,AVITAL E J,et al.Numerical Simulation of Interaction Between Internal Solitary Waves and Submerged Ridges[J].Applied Ocean Research,2016,58:118-134.
[25] SENTHILKUMAR A.Solitary Wave Shoaling and Breaking in a Regularized Boussinesq System[J].2016,doi:10.48550/arXiv.1601.06822.
[26] 王玲玲,王 寅,魏 岗,等.内波环境下圆柱和方柱受力特征:Ⅰ.物理实验[J].水科学进展,2017,28(3):111-119.

基金

国家自然科学基金青年基金项目(52109090,52009087);江西省科技厅自然科学基金项目(20202BABL214050);江西省教育厅科学技术研究项目(GJJ190942)

PDF(10336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/