基于SWAT模型的巴勒更河流域降雨-径流关系

李凯, 王永强, 许继军, 吴志俊, 许翔

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (4) : 41-48.

PDF(2250 KB)
PDF(2250 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (4) : 41-48. DOI: 10.11988/ckyyb.20201272
水资源

基于SWAT模型的巴勒更河流域降雨-径流关系

  • 李凯1, 王永强1, 许继军1, 吴志俊1,2, 许翔1,2
作者信息 +

Rainfall-Runoff Relation in Balegen River Basin Based on SWAT Model

  • LI Kai1, WANG Yong-qiang1, XU Ji-jun1, WU Zhi-jun1,2, XU Xiang1,2
Author information +
文章历史 +

摘要

研究流域的降雨-径流关系可为水资源管理与水土保持等工作提供依据。根据实测降雨资料和历史实测径流数据构建SWAT模型并用于还原径流序列,采用Kendall秩次检验、滑动平均、M-K突变检验、小波分析、累积距平法以及径流系数,分析巴勒更河流域1970—2015年的降雨-径流关系年际变化特征、变化趋势,并运用累积斜率变化率比较方法定量地分离出气候变化和人类活动对径流变化影响的贡献率。结果显示:①将SWAT模型应用在巴勒更河流域时,在校准期时评价指标R2为0.78、纳什效率系数NSE为0.76;验证期R2为0.58、NSE 为0.51,这些指标表明将SWAT模型用于巴勒更河流域的径流还原是可行的。②巴勒更河流域1970—2015年降雨有显著上升的趋势,而径流的趋势不显著;降雨突变点出现在1981年,而径流在1995年、2010年均发生突变;此外,在该流域内降雨、径流序列展现出来的周期性变化也存在差异,尤其是在主周期上,降雨主周期为28 a,径流则为23 a。③降雨-径流关系在1989年、2001年均发生变异,且每次发生变异,都导致径流系数下降,其中1970—1988年径流系数是0.15,1989—2006年径流系数为0.11,2007—2015年径流系数为0.10。④以1970—1988年为基准期,1989—2001年人类活动对径流变化占主导地位,其中径流变化人类活动贡献了65%,而气候变化对于径流变化贡献率为35%;2001—2015年人类活动对流域径流变化贡献率为81%,气候变化对径流变化的贡献率为19%;以1989—2001年为基准期,2001—2015年人类活动对径流变化的贡献率为51%,而剩余的49%是气候变化导致的。

Abstract

Studying the relationship between rainfall and runoff in river basin provides a basis for reasonable water resources management and soil and water conservation. Based on measured rainfall data and historical measured runoff data in the Balegen River basin, SWAT model was constructed and was used to restore runoff series. The interannual variation characteristics and trend of rainfall-runoff relationship from 1970 to 2015 were examined using Kendall rank test, moving average, M-K test, wavelet analysis, cumulative anomaly method, and runoff coefficient analysis. Furthermore, the contribution rate of climate change and human activities to runoff changes were quantitatively separated by comparing the cumulative slope change rate. Results manifested that 1) SWAT model is feasible to restore the runoff in Balegen River basin, with the evaluation index R2 reaching 0.78 and NSE 0.76 in calibration period, and R2 0.58 and NSE 0.51 in verification period. 2) From 1970 to 2015, rainfall in the Balegen River basin displayed a significant upward trend, while runoff trend was not significant; rainfall changed abruptly in 1981, and runoff in 1995 and 2010. The periodicity of rainfall and runoff series varied especially in the principal cycle; the principal cycle of rainfall is 28 years and runoff 23 years. 3) The rainfall-runoff relation changed abruptly in 1989 and 2001, after which the overall runoff coefficient declined, from 0.15 in 1970-1988 to 0.11 in 1989-2006, and 0.10 in 2007-2015. 4) With 1970-1988 as the base period, human activities dominated the runoff change from 1989 to 2001 with a contribution rate of 65%, and climate change contributed 35% to the runoff change; human activities also contributed 81% to runoff change from 2001 to 2015, and climate change contributed 19%. When 1989-2001 was determined as the base period, the contribution rate of human activities to runoff change from 2001 to 2015 was 51%, and the contribution rate of climate change was 49%.

关键词

降雨-径流关系 / SWAT模型 / 趋势变化 / 累积斜率变化率比较方法 / 径流还原 / 巴勒更河

Key words

rainfall-runoff relation / SWAT model / change of trend / comparison of cumulative slope change rate / runoff restoration / Balegen River

引用本文

导出引用
李凯, 王永强, 许继军, 吴志俊, 许翔. 基于SWAT模型的巴勒更河流域降雨-径流关系[J]. 长江科学院院报. 2022, 39(4): 41-48 https://doi.org/10.11988/ckyyb.20201272
LI Kai, WANG Yong-qiang, XU Ji-jun, WU Zhi-jun, XU Xiang. Rainfall-Runoff Relation in Balegen River Basin Based on SWAT Model[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 41-48 https://doi.org/10.11988/ckyyb.20201272
中图分类号: P333   

参考文献

[1] XU Chang-chun, CHEN Ya-ning, CHEN Ya-peng, et al. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin,China[J]. Environmental Management,2013,51(4):926-938.
[2] LIU C K, BRUTSAERT W. A Nonlinear Analysis of the Relationship between Rainfall and Runoff for Extreme Floods[J]. Water Resources Research, 1978, 14(1): 75-83.
[3] HUANG Sheng-zhi, CHANG Jian-xia, HUANG Qiang, et al. Identification of Abrupt Changes of the Relationship between Rainfall and Runoff in the Wei River Basin, China[J]. Theoretical and Applied Climatology, 2015, 120(1/2): 299-310.
[4] 向小华,宋琪峰,陈 喜,等.融合地形和土壤特征的流域蓄水容量模型[J].水科学进展,2013,24(5):651-657.
[5] MODARRES R,OUARDA T B M J.Modeling Rainfall-Runoff Relationship Using Multivariate GARCH Model[J]. Journal of Hydrology, 2013, 499: 1-18.
[6] 李致家,于莎莎,李巧玲,等.降雨-径流关系的区域规律[J].河海大学学报(自然科学版), 2012 , 40(6):597-604.
[7] 陈利者,李致家,李巧玲,等.我国降雨径流关系的区域规律研究[J].水力发电,2014,40(3):8-11,15.
[8] 徐东霞,章光新,尹雄锐.近50年嫩江流域径流变化及影响因素分析[J].水科学进展,2009,20(3):416-421.
[9] 郭爱军, 畅建霞, 王义民,等.近50年泾河流域降雨-径流关系变化及驱动因素定量分析[J]. 农业工程学报, 2015(14):165-171.
[10] 刘昌明,白 鹏,王中根,等.稀缺资料流域水文计算若干研究:以青藏高原为例[J].水利学报,2016,47(3):272-282.
[11] 柴晓玲,郭生练,周 芬,等.无资料地区径流分析计算方法研究[J].中国农村水利水电,2005(5):20-22,26.
[12] 朱 猛,王 强,刘兴年.推理公式法在无资料地区小流域河流划界中的应用:以敖家河小流域为例[J].中国农村水利水电,2019(10):54-57,65.
[13] 芮孝芳,蒋成煜,张金存,等.流域水文模型的发展[J].水文,2006,26(3):22-26.
[14] GASSMAN P W, REYES M R, GREEN C H, et al. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions[R]. Ames, IA: Center for Agricultural and Rural Development (CARD), 2007.
[15] 王子龙,何 馨,姜秋香,等.气候变化下东北中等流域冬季径流模拟和预测[J].水科学进展,2020,31(4):575-582.
[16] 史晓亮,杨志勇,严登华,等.滦河流域土地利用/覆被变化的水文响应[J].水科学进展,2014,25(1):21-27.
[17] 张展羽,司 涵,孔莉莉.基于SWAT模型的小流域非点源氮磷迁移规律研究[J].农业工程学报,2013,29(2):93-100.
[18] 郑 捷,李光永,韩振中,等.改进的SWAT模型在平原灌区的应用[J].水利学报,2011,42(1):88-97.
[19] 程 磊,徐宗学,罗 睿,等.SWAT在干旱半干旱地区的应用:以窟野河流域为例[J].地理研究,2009,28(1):65-73,275.
[20] 童成立,张文菊,汤 阳,等.逐日太阳辐射的模拟计算[J].中国农业气象,2005,26(3):165-169.
[21] DILE Y, SRINIVASAN R, GEORGE C. QGIS Interface for SWAT (QSWAT): User Manual for QSWAT Version 1.4[K]. Texas: USDA Agricultural Research Service, 2015.
[22] ARNOLD J G, MORIASI D N, GASSMAN P W. SWAT: Model Use, Calibration and Validation[J]. Transactions of the ASABE, 2012, 55(4): 1491-1508.
[23] ABBASPOUR K C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs: A User Manual[K]. Switzerland: EAWAG Aquatic Research, 2014.
[24] DUAN Q Y, GUPTA H V, SOROOSHIAN S, et al. Calibration of Watershed Models, Volume 6[M] //Water Science and Application. Doi: 10.1029/WS006.
[25] 刘君龙,许继军,袁 喆,等.CMADS驱动SWAT模型在水循环模拟中的应用:以洱海流域为例[J].人民长江,2020,51(3):65-72.
[26] 李丽娟,郑红星.华北典型河流年径流演变规律及其驱动力分析:以潮白河为例[J].地理学报,2000(3):309-317.
[27] 吴保生,夏军强,张原锋.黄河下游平滩流量对来水来沙变化的响应[J].水利学报,2007(7):886-892.
[28] 宫兴龙,杜树平,付 强,等.挠力河流域丘陵-平原-湿地区径流变化驱动力分析[J].农业工程学报,2019,35(16):114-124.
[29] 孙卫国,程炳岩,李 荣.黄河源区径流量与区域气候变化的多时间尺度相关[J].地理学报,2009,64(1):117-127.
[30] RAN Li-shan, WANG Sui-ji, FAN Xiao-li. Channel Change at Toudaoguai Station and Its Responses to the Operation of Upstream Reservoirs in the Upper Yellow River[J]. Journal of Geographical Sciences, 2010, 20(2): 231-247.
[31] 王随继,闫云霞,颜 明,等.皇甫川流域降水和人类活动对径流量变化的贡献率分析:累积量斜率变化率比较方法的提出及应用[J].地理学报,2012(3):102-111.
[32] XU Jiong-xin. Variation in Annual Runoff of the Wudinghe River as Influenced by Climate Change and Human Activity[J].Quaternary International, 2011, 244(2): 230-237.

基金

国家重点研发计划课题项目(2017YFC0403606);国家自然科学基金面上项目(41801260)

PDF(2250 KB)

Accesses

Citation

Detail

段落导航
相关文章

/