基于改进分水岭算法的农村地区LiDAR点云建筑物提取

李昂, 黄煌, 夏煜, 沈定涛, 王结臣

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (3) : 149-154.

PDF(2115 KB)
PDF(2115 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (3) : 149-154. DOI: 10.11988/ckyyb.201913902021
信息技术应用

基于改进分水岭算法的农村地区LiDAR点云建筑物提取

  • 李昂1, 黄煌1, 夏煜2, 沈定涛2, 王结臣1,3,4
作者信息 +

Extraction of Buildings in Rural Area Based on LiDAR Point Cloud and Improved Watershed Algorithm

  • LI Ang1, HUANG Huang1, XIA Yu2, SHEN Ding-tao2, WANG Jie-chen1,3,4
Author information +
文章历史 +

摘要

针对LiDAR点云建筑物提取的研究很多,而在农村区域植被与建筑粘连且高度近似情况下的讨论较少。考虑到中国典型农村区域建筑特征,以湖南省益阳市泗湖山镇为研究区进行LiDAR点云的建筑提取研究。首先利用梯度及梯度方向约束的形态学滤波方法,将原始点云滤波得到地面点,对地面点及原始点云进行插值得到数字高程模型(DEM)和数字地表模型(DSM);然后通过两者相减得到归一化的NDSM,进而对NDSM进行高程及梯度双约束的标记分水岭变换得到地物对象;最后建立特征指标,对地物对象进行最大似然分类得到建筑物对象。研究表明建筑物分类的生产者精度和用户精度均>90%, Kappa系数>0.8, 构建方法在农村地区建筑提取研究中取得了良好效果。

Abstract

Many studies have focused on the extraction of buildings from Light Detection and Ranging (LiDAR) point cloud information, but few have investigated the process in rural areas where vegetation and buildings are of similar heights and interconnected. With Sihushan County in Hunan Province which has typical rural building characteristics as study area, the building information is extracted using LiDAR point cloud data. A modified morphological filter in which gradient and gradient direction of primitive point were used to constraint the area of filtering is adopted. The interpolated ground points and primitive points were used to obtain a digital elevation model (DEM) and a digital surface model (DSM), and the two were subtracted to derive a normalized DSM (NDSM). Then, a transformation of the sign watershed was conducted under control of both height and gradient to obtain ground objects. Finally, using built feature indicators, building objects were identified based on a maximum likelihood classification. Results show that the user accuracy and producer accuracy of the building extraction are both greater than 90%, and the Kappa coefficient is greater than 0.8, which suggest that the proposed method achieved good results in building extraction in rural areas.

关键词

LiDAR / 形态学滤波 / 分水岭算法 / 特征值 / 最大似然分类

Key words

LiDAR / morphological filter / watershed algorithm / features / maximum likelihood classification

引用本文

导出引用
李昂, 黄煌, 夏煜, 沈定涛, 王结臣. 基于改进分水岭算法的农村地区LiDAR点云建筑物提取[J]. 长江科学院院报. 2021, 38(3): 149-154 https://doi.org/10.11988/ckyyb.201913902021
LI Ang, HUANG Huang, XIA Yu, SHEN Ding-tao, WANG Jie-chen. Extraction of Buildings in Rural Area Based on LiDAR Point Cloud and Improved Watershed Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 149-154 https://doi.org/10.11988/ckyyb.201913902021
中图分类号: TP79   

参考文献

[1] ACKERMANN F. Airborne Laser Scanning-Present Status and Future Expectations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2): 64-67.
[2] 赖旭东, 郑学东, 万幼川. 激光雷达技术在数字流域中的应用探讨[J]. 长江科学院院报, 2005,22(5):96-99.
[3] ZHANG K, WHITMAN D. Comparison of Three Algorithms for Filtering Airborne LiDAR Data[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(3): 313-324.
[4] ZHOU X, MA Q, LI E, et al. Filter of LiDAR Data Based on Multi-resolution and Directional Elevation Tolerance[C]//Proceedings of the International Symposium on Photonics and Optoelectronics (SOPO 2009). Wuhan, China. August 14-16, 2009: 1-4.
[5] 尚大帅,黎恒明,赵 羲. 一种基于曲面约束的点云数据滤波方法[J]. 雷达科学与技术, 2013(4):77-82.
[6] 焦晓双.机载激光雷达点云滤波算法与DEM内插方法研究[D].太原:太原理工大学,2018.
[7] SUSAKI J. Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation[J]. Remote Sensing, 2012, 4(6): 1804-1819.
[8] BRUUN A, WEUDNER U. Hierarchical Bayesian Nets for Building Extraction Using Dense Digital Surface Models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53(5): 296-307.
[9] ELBERINK S O, MAAS H G. The Use of Anisotropic Height Texture Measures for the Segmentation of Airborne Laser Scanner Data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2): 678-684.
[10] 王燕燕, 于海洋. 基于倾斜摄影综合SVM与模糊规则的城市不透水面信息提取[J]. 地理与地理信息科学, 2018, 34(6):26-32.
[11] 许慧敏, 齐 华, 南 轲,等. 结合nDSM的高分辨率遥感影像深度学习分类方法[J]. 测绘通报, 2019(8):63-67.
[12] CHENG L, TONG L, CHEN Y, et al. Integration of LiDAR Data and Optical Multi-view Images for 3D Reconstruction of Building Roofs[J]. Optics and Lasers in Engineering, 2013, 51(4): 493-502.
[13] KABOLIZADE M, ENADI H, AHMADI S. An Improved Snake Model for Automatic Extraction of Buildings from Urban Aerial Images and LiDAR Data[J]. Computers, Environment and Urban Systems, 2010, 34(5): 435-441.
[14] 吴波涛,张 煜,陈文龙,等.基于红黑树与K-D 树的LiDAR数据组织管理[J].长江科学院院报,2016,33(11):32-35.
[15] SILVAN J L,WANG L.A Multi-resolution Approach for Filtering LiDAR Altimetry Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(1):11-22.

基金

国家重点研发计划项目(2018YFC0407804);国家自然科学基金项目(41501558)

PDF(2115 KB)

Accesses

Citation

Detail

段落导航
相关文章

/