基于细观复合材料的寒区混凝土导热系数模型

陈瑞, 宫经伟

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (9) : 142-148.

PDF(8238 KB)
PDF(8238 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (9) : 142-148. DOI: 10.11988/ckyyb.20190652
水工结构与材料

基于细观复合材料的寒区混凝土导热系数模型

  • 陈瑞, 宫经伟
作者信息 +

A Thermal Conductivity Model of Concrete in Cold Region Based on Mesostructure Composite

  • CHEN Rui, GONG Jing-wei
Author information +
文章历史 +

摘要

为分析正负温交替变化对混凝土导热系数的影响机理,进行了温变条件下混凝土导热系数模型研究。提出不同温度下的混凝土孔隙内液相(冰水相)导热系数计算理论,用以表征不同温度下混凝土内部孔隙溶液相变演化特征。从混凝土细观复合材料角度出发,将混凝土看成由等效固相、混凝土孔隙内液相(冰水相)、气相组成的三相复合材料,建立了含温度、饱和度及孔隙分布的串-并联混凝土三相复合材料导热系数计算模型,并与其它模型进行对比计算分析。研究结果表明:串-并联模型计算出的寒区混凝土导热系数与实测值有较好的一致性,且计算精度较高,相对误差范围为8.83%~24.13%;模型计算结果较好地反映了寒区混凝土导热系数与饱和度及温度间的相关关系,在温度敏感区(-10~0 ℃)内,混凝土导热系数发生骤变,变幅范围为2.59%~8.47%。混凝土孔隙内液相(冰水相)导热系数计算模型有效地刻画了温变条件下孔隙溶液相变特征,串-并联三相导热系数计算模型也客观地揭示了正负温交替变化下混凝土导热系数的演化机理。

Abstract

A thermal conductivity model of concrete under temperature variation is proposed in the purpose of exploring the influence mechanism of alternating positive and negative temperatures on the thermal conductivity of concrete. The calculation theory of thermal conductivity of liquid phase (ice-water phase) in concrete pore at different temperatures is proposed to characterize the phase transformation characteristics of pore solution in concrete at different temperatures.Concrete is regarded as a three-phase composite material consisting of equivalent solid phase, liquid phase (ice-water phase), and gas phase in concrete pore. The series-parallel calculation model for the thermal conductivity of concrete as a three-phase composite material varying with temperature, saturation, and pore distribution is established and compared with other models. The thermal conductivity of concrete calculated by the present series-parallel model is in good agreement with measured values, with the relative error ranging from 8.83% to 24.13%, indicating high accuracy. The calculated results of the model well reflect the correlation between thermal conductivity and saturation and temperature of concrete in cold region. In sensitive temperature (-10 ℃~0 ℃) zone, the thermal conductivity of concrete changes abruptly with an amplitude from 2.59% to 8.47%. The liquid-phase (ice-water phase) model effectively depicts the phase transformation of pore solution under temperature variation, and the series-parallel three-phase model also objectively reveals the evolution mechanism of thermal conductivity of concrete under alternating positive and negative temperatures.

关键词

混凝土 / 正负温交替 / 饱和度 / 导热系数 / 三相复合材料 / 计算模型

Key words

concrete / alternating positive and negative temperatures / saturation / thermal conductivity / three-phase composite / calculation model

引用本文

导出引用
陈瑞, 宫经伟. 基于细观复合材料的寒区混凝土导热系数模型[J]. 长江科学院院报. 2020, 37(9): 142-148 https://doi.org/10.11988/ckyyb.20190652
CHEN Rui, GONG Jing-wei. A Thermal Conductivity Model of Concrete in Cold Region Based on Mesostructure Composite[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(9): 142-148 https://doi.org/10.11988/ckyyb.20190652
中图分类号: TV41   

参考文献

[1] KIM Kook-han. An Experimental Study on Thermal Conductivity of Concrete[J]. Concrete Research, 2003, 33(3): 363-271.
[2] 张 雪, 胡 敏, 陈德鹏. 含水率及温度对钢渣泡沫混凝土导热系数的影响[J]. 安徽工业大学学报(自然科学版), 2018, 35(2): 104-109.
[3] LEE Jong-han,LEE Jong-jae,CHO Baik-soon,et al. Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method[J]. International Journal of Concrete Structures and Materials,2012,6(3):177-186.
[4] TANG S W,CHEN E,SHAO H Y, et al. A Fractal Approach to Determine Thermal Conductivity in Cement Pastes[J]. Construction and Building Materials,2015,74:73-82.
[5] ZHANG Wei-ping,MIN Hong-guang,GU Xiang-lin, et al. Mesoscale Model for Thermal Conductivity of Concrete[J].Construction and Building Materials,2015,98: 8-16.
[6] 王立成, 常 泽, 鲍玖文. 基于多相复合材料的混凝土导热系数预测模型[J]. 水利学报, 2017, 48(7): 765-772.
[7] LIU K, LU L, WANG F, et al. Theoretical and Experimental Study on Multi-phase Model of Thermal Conductivity for Fiber Reinforced Concrete[J]. Construction and Building Materials, 2017, 148: 465-475.
[8] 孙 伟. 现代结构混凝土耐久性评价与寿命预测[M]. 北京: 中国建筑工业出版社, 2015.
[9] 张士萍, 邓 敏, 唐明述. 混凝土冻融循环破坏研究进展[J]. 材料科学与工程学报, 2008, 26(6): 990-994.
[10]BRUN M, LALLEMAND A, QUINSON J F, et al. A New Method for the Simultaneous Determination of the Size and the Shape of Pores[J]. Thermochimica Acta, 1977, 21(1): 59-88.
[11]BRUGGEMAN D. Calculation of Various Physical Constants in Heterogeneous Substances. I. The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances[J]. Annals of Physics, 1935, 416(7): 636-664.
[12]宫经伟, 曹国举, 陈国新, 等. 混凝土导热系数与其饱和度及温度的关系[J]. 水电能源科学, 2017, 35(12): 112-115.
[13]曹国举, 宫经伟, 陈 瑞, 等. 不同温度条件下混凝土导热系数影响因素研究[J]. 长江科学院院报,2019, 36(12): 144-150.
[14]曹国举. 寒区混凝土导热系数影响因素及计算模型研究[D]. 乌鲁木齐:新疆农业大学, 2017.
[15]MAXWELL J C A. A Treatise on Electricity and Magnetism[M]. 2nd ed. New York: Oxford University Press, 1904: 435-441.
[16]张伟平,邢益善,顾祥林.基于细观复合材料的混凝土导热系数模型[J].结构工程师,2012,28(2):39-45.
[17]肖建庄, 宋志文, 张 枫. 混凝土导热系数试验与分析[J]. 建筑材料学报, 2010, 13(1): 17-21.
[18]张伟平, 童 菲, 邢益善, 等. 混凝土导热系数的试验研究与预测模型[J]. 建筑材料学报, 2015, 18(2): 183-189.

基金

国家自然科学基金项目(51541909,51869031);新疆农业大学研究生科研创新项目(XJAUGRI2017-025)

PDF(8238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/