基于应变率损伤本构模型的围岩分区破裂化现象数值模拟

唐礼忠, 陈英毅, 刘昌, 申帆

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (7) : 82-87.

PDF(4661 KB)
PDF(4661 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (7) : 82-87. DOI: 10.11988/ckyyb.20190153
岩土工程

基于应变率损伤本构模型的围岩分区破裂化现象数值模拟

  • 唐礼忠, 陈英毅, 刘昌, 申帆
作者信息 +

Numerical Simulation of Zonal Disintegration of Surrounding Rock Based on Strain Rate Damage Constitutive Model

  • TANG Li-zhong, CHEN Ying-yi, LIU Chang, SHEN Fan
Author information +
文章历史 +

摘要

为了探究深部巷道围岩的分区破裂化现象,利用ANSYS/LS-DYNA软件数值模拟,使用Cowper-Symonds本构模型结合GISSMO模型,将巷道的开挖视为动力过程。从岩石的细观角度出发,考虑岩石的应变率效应以及损伤对岩石的力学性质的影响,构建应变率损伤本构模型。同时结合应力三轴度,以更全面地描述岩石在各种应力条件下的力学特性,并基于最大应变和最大拉应力准则建立单元破坏准则。对岩石进行单轴压缩数值、掘进开挖法模拟及实际观测的结果表明:岩石单轴压缩全应力-应变曲线拟合效果较好;掘进开挖速率对分区破裂化现象有影响;掘进开挖法的分区破裂化模拟结果与实际观测数据具有一定的一致性。提出的模型对于围岩分区破裂化现场的模拟及预测有一定的参考意义。

Abstract

The generation of zonal disintegration of surrounding rock is analyzed by using the numerical simulation software ANSYS/LS-DYNA. Piecewise linear elastoplastic model is used to fit the rock's total stress-strain curve. The excavation of roadways is regarded as a dynamic process by using Cowper-symonds constitutive model in combination with GISSMO model, which take the effects of strain rate and damage on mechanical properties of rock into consideration in mesoscopic scale. Meanwhile, the mechanical properties of rock under various stress conditions are depicted more accurately based on stress triaxiality. The element failure criteria are developed based on maximum strain criterion and maximum tensile stress criterion. The complete stress-strain curve obtained by numerical simulation of uniaxial compression of rock shows good fitting results. According to previous work and engineering practice, the model is modified, and the tunneling and excavation method is adopted in the simulation. The tunneling excavation rate has an impact on the zonal disintegration. Comparison between simulation results and actual observation data demonstrates that the two are consistent.

关键词

岩石损伤 / 分区破裂 / 应变率效应 / 掘进开挖 / 损伤本构模型

Key words

rock damage / zonal disintegration / strain rate effect / tunneling excavation / damage constitutive model

引用本文

导出引用
唐礼忠, 陈英毅, 刘昌, 申帆. 基于应变率损伤本构模型的围岩分区破裂化现象数值模拟[J]. 长江科学院院报. 2020, 37(7): 82-87 https://doi.org/10.11988/ckyyb.20190153
TANG Li-zhong, CHEN Ying-yi, LIU Chang, SHEN Fan. Numerical Simulation of Zonal Disintegration of Surrounding Rock Based on Strain Rate Damage Constitutive Model[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 82-87 https://doi.org/10.11988/ckyyb.20190153
中图分类号: TD313   

参考文献

[1]БОРИСОВЕЦ В А. Неоднородности Волнового Характера В Породах Вблизи Выработок, Сооружаемых Буровзрывным Способом[J]. Шахтное Стройтельство, 1972(9): 7-11.
[2] 钱七虎. 深部岩体工程响应的特征科学现象及“深部”的界定[J]. 华东理工学院学报(自然科学版), 2004, 27(1): 1-5.
[3] SHEMYAKIN E I,FISENKO G L,KURLENYA M V,et al. Zonal Disintegration of Rocks Around Underground Workings, Part I: Data of In-situ Observations[J]. Journal of Mining Science, 1986, 22(3): 157-168.
[4] SHEMYAKIN E I,FISENKO G L,KURLENYA M V,et al. Zonal Disintegration of Rocks Around Underground Workings,Part II:Rock Fracture Simulated in Equivalent Materials[J]. Journal of Mining Science,1986,22(4):223-232.
[5] SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal Disintegration of Rocks Around Underground Mines,Part III:Theoretical Concepts[J]. Journal of Mining Science,1987, 23(1): 1-6.
[6] SHEMYAKIN E I,KURLENYA M V,OPARIN V N,et al. Zonal Disintegration of Rocks Around Underground Workings, Part IV: Practical Applications[J]. Journal of Mining Science, 1989, 25(4): 297-302.
[7] GUZEV M A, PAROSHIN A A. Non-euclidean Model of the Zonal Disintegration of Rocks Around an Underground Working[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(1): 131-139.
[8] BORZYKH F. Features of theZonal Disintegration of Roof Rocks and a Coal Seam Around Mine Workings[J]. Journal of Mining Science, 1990, 26(5): 418-427.
[9] КОЗЕЛ А М,БОРИСОВЕЦ В А,РЕПКО А А.Горное Давление И Способы Поддержания Вертикальных Стволов [M].Москва:Недра,1976.
[10]高 强,张强勇,张绪涛,等. 深部洞室开挖卸荷分区破裂机制的动力分析[J]. 岩土力学, 2018, 39(9): 3181-3194.
[11]王红英, 张 强, 张玉军, 等. 深部巷道围岩分区破裂化数值模拟[J]. 煤炭学报, 2010, 35(4): 535-540.
[12]李树忱,冯现大,李术才,等. 深部岩体分区破裂化现象数值模拟[J]. 岩石力学与工程学报, 2011, 30(7): 1337-1344.
[13]ZHU Zhe-ming, WANG Chao, KANG Ji-ming,et al. Study on the Mechanism of Zonal Disintegration Around an Excavation[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 67: 88-95.
[14]钱七虎. 分区破裂化研究现状和一些思考[C]∥中国岩石力学与工程学会.新观点新学说学术沙龙文集21. 北京:中国岩石力学与工程学会,2008:10-15,134-135.
[15]刘 亮,卢文波,陈 明,等.钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究[J]. 岩石力学与工程学报, 2016, 35(6): 1133-1140.
[16]CLAYTON J D. A Model for Deformation and Fragmentation in Crushable Brittle Solids[J]. International Journal of Impact Engineering, 2008, 35(5): 269-289.

基金

国家自然科学基金项目(51474250)

PDF(4661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/