为测算不同水文水质条件下东洞庭湖动态纳污能力,利用2003—2016年MODIS遥感数据和实测水文数据建立水位-面积-湖容关系模型,提取不同水位、入湖流量、入湖水质条件下的纳污能力计算参数,参照《水域纳污能力计算规程》测算出不同水文水质条件下的东洞庭湖动态纳污能力系数以及COD、氨氮的动态纳污能力。研究结果表明:东洞庭湖纳污能力随着水位、流量、水质而动态变化,COD最小纳污能力为14 200 g/s,大于2016年年均排放强度1 837 g/s,不存在水质超标风险;氨氮最小纳污能力43 g/s,小于2016年年均排放强度275 g/s,水质超标风险大;明确了导致氨氮超标的水文、水质条件,认为氨氮入湖浓度<0.95 mg/L时,湖泊氨氮不超标。主要结论为:①水位-面积-湖容关系模型可为测算湖泊动态纳污能力提供支撑;②建议根据动态水域纳污能力确定污染物排放量,科学利用水环境容量;③东洞庭湖入湖氨氮浓度应控制在0.95 mg/L以下,以保证水质达标。研究成果对维护和改善洞庭湖水环境质量具有重要的现实意义。
Abstract
In an attempt to obtain the dynamic pollutant absorption capacity of East Dongting Lake in different hydrological and water quality conditions, a model of relationship among water level, area and volume was established according to MODIS remote sensing data in 2003-2016 and hydrological data. Some calculation parameters in the presence of different water levels, incoming flow rates, and incoming water quality indicators were acquired. According to the Code for calculation of water pollution absorption capacity, the coefficient of pollutant absorption capacity, together with the dynamic absorption capacity of COD and ammonia-nitrogen in different hydrological and water quality conditions was calculated. Authors insisted that the pollutant absorption capacity of East Dongting Lake varies with water level, discharge and water quality dynamically. The minimum absorption capacity of COD is 14 200 g/s, greater than the average emission intensity which is 1 837 g/s in 2016, brewing no risk of standard-exceeding; but the minimum absorption capacity of ammonia-nitrogen is 43 g/s, smaller than the average emission intensity which is 275 g/s in 2016, posing large risk of standard-exceeding of ammonia-nitrogen. Moreover, hydrology and water quality conditions which would result in the standard-exceeding of water quality were determined: when incoming concentration of ammonia-nitrogen stays below 0.95 mg/L, ammonia-nitrogen concentration in the Lake would not exceed standard. We concluded that (1) The established model provides support for the calculation of dynamic pollutant absorption capacity; (2) Pollutant emission could be rearranged reasonably according to the dynamic pollutant absorption capacity. (3) The incoming concentration of ammonia-nitrogen should be controlled under 0.95 mg/L in East Dongting Lake.
关键词
水域纳污能力 /
东洞庭湖 /
水位-面积-湖容关系 /
水文水质 /
氨氮
Key words
pollutant absorption capacity /
East Dongting Lake /
relationship among water level, area and volume /
hydrology and water quality /
ammonia-nitrogen
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程俊翔,徐力刚,吴 睿,等.东洞庭湖最低生态水位研究[J].江西科学,2015,33(6):932-937.
[2] 黄进良.洞庭湖湿地的面积变化与演替[J].地理研究,1999,18(3):297-304.
[3] 谢永宏,张 琛,蒋 勇.洞庭湖湿地生态环境演变[M].长沙:湖南科学技术出版社,2014.
[4] 杨 波,廖丹霞,李 京,等.东洞庭湖湿地生态系统健康状态与水位关系研究[J].长江流域资源与环境, 2014,23(8):1145-1152.
[5] 赵淑清,方精云,陈安平,等.东洞庭湖保护区 1989~ 1998年水禽栖息地动态研究[J].自然资源学报, 2003,18(6):726-733.
[6] 庄大昌.洞庭湖湿地生态系统服务功能价值评估[J].经济地理,2004,24(3):391-394.
[7] 穆宏强.长江流域水资源保护科学研究之管见[J]. 长江科学院院报,2018,35(4):1-5,17.
[8]陈 进,刘志明.近20年长江水资源利用现状分析[J].长江科学院院报,2018,35(1):1-4.
[9] 李青云,黄 茁,黄 薇,等.长江科学院流域水环境和水生态研究回顾与展望[J].长江科学院院报,2011, 28(10):43-48.
[10]李青云.长江科学院流域水环境专业研究进展及展望[J].长江科学院院报,2015,32(6):7-14.
[11]GB/T 25173—2010,水域纳污能力计算规程[S].北京:中国水利水电出版社,2011.
[12]李京文.基于灞河城市河流动态纳污能力的研究[D].西安:西安理工大学,2014.
[13]张海欧,闵 涛,罗军刚,等.渭河干流纳污能力动态计算模型系统开发[J].人民黄河,2013,35(6):70-72.
[14]易波琳,李晓斌,梅金华.洞庭湖面积容积与水位关系及调蓄能力评估[J].湖南地质,2000,19(4):267-270.
[15]宋求明,熊立华,肖 义,等.基于MODIS遥感影像的洞庭湖面积与水位关系研究[J].节水灌溉,2011,(6): 20-23.
[16]赖锡军,姜加虎,黄 群.洞庭湖地区水系水动力耦合数值模型[J].海洋与湖沼,2008,39(1):74-81.
[17]LAI X, JIANG J, HUANG Q. Effects of the Normal Operation of the Three Gorges Reservoir on Wetland Inundation in Dongting Lake, China: A Modelling Study[J]. Hydrological Sciences Journal, 2013, 58(7): 1467-1477.
[18]黄 茁,冯 雪,赵 鑫,等.基于数值模拟的纳污能力计算方法探讨[J].长江科学院院报,2015,32(6):15-19.
[19]胥海威.基于改进随机聚类决策森林算法的遥感影像分类研究[D].长沙:中南大学,2012.
[20]叶 春,刘元波,赵晓松,等.基于MODIS的鄱阳湖湿地植被变化及其对水位的响应研究[J].长江流域资源与环境,2013,22(6):705-712.
[21]岳阳市环境保护局.岳阳市二O一六年度环境质量公报[R].岳阳:岳阳市环境保护局,2017.
基金
国家自然科学基金项目(41672228);国家重大水专项(2014ZX07201-010)