为探究含重金属细颗粒引起土壤重金属污染的形成机制,以矿渣为对象,采用柱试验,研究了干湿交替诱导含重金属细颗粒在多孔介质中释放迁移的特征与机制。结果表明:干湿交替显著促进了粒径在342~955 nm的矿渣颗粒的释放迁移,该促进作用由3种作用机制联合引起,且与落干期时长有关,而与干湿交替次数和落干期排列顺序无关;释放迁移的矿渣颗粒在石英砂多孔介质中发生了累积,落干时间越长,累积质量越高,累积质量随介质深度的增加而减少,累积颗粒的粒径分布随介质深度无明显变化。细颗粒的释放迁移是含重金属细颗粒引起土壤重金属污染的主要原因,固应对干湿交替下含重金属细颗粒的环境行为给予重视。
Abstract
In order to explore the formation mechanism of heavy metal contamination in soil caused by metalrich fine particles, we carried out column experiments with mine tailings as object, and investigated the release and transport mechanisms of metalrich fine particles in porous media under drying wetting cycles. Results show that dryingwetting cycles significantly enhance the release and transport of tailing particles ranged from 342 nm to 955 nm. This enhancing effect is resulted from the combined action of three mechanisms, and highly depends on the drying duration instead of the number or order of dryingwetting cycles. Furthermore, the released and transported tailing particles are accumulated in the porous media, namely quartz sands. The longer the drying duration is, the more the accumulative mass is. In particular, the accumulative mass decreases with the increase of media depth, but the size distribution of the accumulated tailing particles changes little with the increase of media depth. Finally, the release and transport of fine particles should be responsible for the heavy metal contamination in soil caused by metalrich fine particles, and we should pay attention to the environmental behavior of metalrich fine particle under drying wetting cycles.
关键词
干湿交替 /
细颗粒 /
重金属 /
多孔介质 /
释放迁移
Key words
drying wetting cycle /
fine particle /
heavy metal /
porous media /
release and transport
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]FENG X, DAI Q, QIU G, et al. Gold Mining Related Mercury Contamination in Tongguan, Shaanxi Province, PR China[J]. Applied Geochemistry, 2006, 21(11): 1955-1968.
[2]DEGUELDRE C, BENEDICTO A. Colloid Generation During Water Flow Transients[J]. Applied Geochemistry, 2012,27(6): 1220-1225.
[14]ZHUANG J, MCCARTHY J F, TYNER J S, et al. In Situ Colloid Mobilization in Hanford Sediments under Unsaturated Transient Flow Conditions: Effect of Irrigation Pattern[J]. Environmental Science and Technology, 2007,41: 3199-3204.
[15]LU C, WU Y, HU S. Drying-wetting Cycles Facilitated Mobilization and Transport of Metal-rich Colloidal Particles from Exposed Mine Tailing into Soil in A Gold Mining Region along the Silk Road[J]. Environmental Earth Sciences, 2016,75(12): 1-12.
[16]BIN G, CAO X, DONG Y, et al. Colloid Deposition and Release in Soils and Their Association With Heavy Metals[J]. Critical Reviews in Environmental Science and Technology, 2011,41(4): 336-372.
[17]卢聪, 李涛, 付义临, 等. 基于生物可利用性与宽浓度范围的Hakanson潜在生态风险指数法的创建:以小秦岭金矿区农田土壤为例[J]. 地质通报, 2015, 34(11): 2054-2060.
[18]LU C, WU Y, HU S, et al. Mobilization and Transport of Metal-rich Colloidal Particles from Mine Tailings into Soil under Transient Chemical and Physical Conditions[J]. Environmental Science and Pollution Research, 2016, 23(8):8021-8034.
[19]MAJDALANI S, MICHEL E, DI-PIETRO L, et al. Effects of Wetting and Drying Cycles on In Situ Soil Particle Mobilization[J]. European Journal of Soil Science, 2008,59(2): 147-155.
[20]SCHELDE K, MOLDRUP P, JACOBSEN O H, et al. Diffusion-Limited Mobilization and Transport of Natural Colloids in Macroporous Soil[J]. Vadose Zone Journal, 2002,1(1): 125-136.
[21]MOHANTY S K, BULICEK M C D, METGE D W, et al. Mobilization of Microspheres from a Fractured Soil During Intermittent Infiltration Events[J]. Vadose Zone Journal, 2015,14(1).DOI:10.2136/vzj2014.05.0058.
[22]CHATTERJEE N, LAPIN S, FLURY M. Capillary Forces Between Sediment Particles and an Air-water Interface[J]. Environmental Science and Technology, 2012,46(8): 4411-4418.
[23]KNAPPENBERGER T, FLURY M, MATTSON ED, et al. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?[J]. Environmental Science and Technology, 2014,48(7): 3791-3799.
[24]张家发, 焦赳赳. 颗粒形状对多孔介质孔隙特征和渗流规律影响研究的探讨[J]. 长江科学院院报, 2011, 28(3): 39-44.
基金
国土资源部公益性行业科技攻关项目(201111020);中国地质调查局项目(12120114056201);中国地质调查局&河北省地下水污染机理与修复重点实验室开放基金项目(KF201610)