为研究深部灰岩蠕应变特性,采用GDS-VIS三轴流变仪对不同深度试样做分级加载单轴蠕变试验。基于试验结果,计算出灰岩长期强度与瞬时强度之比的均值为0.758,且深度越深比值越小;分析不同深度灰岩在各分级应力水平下轴向蠕应变增量与加载级数的变化规律,并将蠕应变增量进行一次累加,得到轴向蠕应变。结果表明:蠕应变增量随级数的增加呈现先减小后剧增的变化规律,且随深度增加,蠕应变增量达到谷底所对应的应力百分比有明显增大趋势;在分级加载过程中,随级数增加,轴向蠕应变先后呈现减速增加、等速增加和加速增加3个发展阶段;当恒载应力百分比为60%~70%时,蠕应变趋于稳定,当超过该范围后,蠕应变加速增加直至发生蠕变破坏。研究得到的这一应力百分比范围可以为识别深部灰岩是否会发生蠕变破坏提供依据。
Abstract
In the aim of exploring the creep characteristics of deep limestone, uniaxial creep tests were conducted with GDS-VIS triaxial rheometer by step loading on specimens from different depths. According to the test results, the mean value (0.758) of the ratio of long-term strength to instantaneous strength decreases as depth increases. Furthermore, the variation law of axial creep strain increment of limestone in different depths under different stress levels was investigated, and then axial creep strains were obtained by accumulating creep strain increment. Results revealed that creep strain increment decreased first and then increased dramatically with the increasing of stress level. As depth increased, the percentage of stress corresponding to the minimum creep strain increment obviously increased. Moreover, with the increase of loading level, the axial creep strain experienced three development stages from decelerated growth, constant growth and accelerated growth. When the stress percentage ratio of constant load was within the range from 60% to 70%, creep strain tended to be stable; whereas beyond the range, the creep strain acceleratedly increased until creep failure. Therefore, the range of stress percentage could be taken as reference for identifying whether creep failure will happen or not for deep limestone.
关键词
采矿工程 /
深部灰岩 /
蠕应变特性 /
单轴蠕变试验 /
分级加载 /
长期强度
Key words
mining engineering /
deep limestone /
creep strain characteristics /
uniaxial creep test /
step loading /
long-term strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙 钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报,2007,26(6):1081-1106.
[2] 蒋海飞,胡 斌,刘 强,等. 一种新的岩石黏弹塑性流变模型[J]. 长江科学院院报,2014,31(7):44-48.
[3] 张 哲,王大国,洪 林. 深部岩体中断续节理对巷道稳定性影响的数值试验[J]. 辽宁工程技术大学学报,2007, 26(4):481-484.
[4] 周宏伟,谢和平,左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展,2005,35(1):91-99.
[5] 胡 波,王宗林,梁 冰,等. 岩石蠕变特性试验研究[J]. 实验力学,2015,30(4):438-446.
[6] 刘传孝,贺加栋,张美政,等. 深部坚硬细砂岩长期强度试验[J]. 采矿与安全工程学报,2010,27(4):581-584.
[7] 王志荣,张利民,韩中阳. 平顶山盐田互层状盐岩蠕变特性与试验模型研究[J]. 水文地质工程地质,2014,41(5):125-130,137.
[8] AYDAN O, AKAGI T, KAWAMOTO T. The Squeezing Potential of Rock Around Tunnels: Theory and Prediction with Examples Taken from Japan[J]. Rock Mechanics and Rock Engineering, 1996, 29(3): 125-143.
[9] 宋勇军,雷胜友,邹 翀,等. 分级加载下炭质板岩蠕变特性的试验研究[J]. 长江科学院院报,2013,30(9):47-52.
[10] MALAN D F. Time-dependent Behavior of Deep Level Tabular Excavations in Hard Rock[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 123-155.
[11] 邵珠山, 李晓照. 基于细观力学的脆性岩石蠕变损伤特性研究[J]. 固体力学学报,2015,36(增1):44-49.
[12] 张清照,沈明荣,丁文其. 锦屏绿片岩力学特性及长期强度特性研究[J]. 岩石力学与工程学报,2012,31(8):1642-1649.
[13] 曹 平,郑欣平,李 娜,等. 深部斜长角闪岩流变试验及模型研究[J]. 岩石力学与工程学报,2012, 31(增1):3015-3021.
[14] 曹文贵,袁靖周,王江营,等. 考虑加速蠕变的岩石蠕变过程损伤模拟方法[J]. 湖南大学学报(自然科学版),2013,40(2):15-20.
[15] 蒋昱州,王瑞红,朱杰兵,等. 砂岩的蠕变与弹性后效特性试验研究[J]. 岩石力学与工程学报,2015,34(10):2010-2017.
[16] 韩庚友,王思敬,张晓平,等. 分级加载下薄层状岩石蠕变特性研究[J]. 岩石力学与工程学报,2010,29(11):2239-2247.
[17] 王志俭,殷坤龙,简文星,等. 三峡库区万州红层砂岩流变特性试验研究[J]. 岩石力学与工程学报,2008,27(4):840-847.
[18] 潘金龙,王 俊,刘伟庆,等. 大气或氯离子浸泡环境下玻璃纤维增强复合材料蠕变试验和理论研究[J]. 工业建筑,2015,45(4):127-131.