水库蓄水会对周围工程与地质环境造成较大的影响,严重时甚至会引起岸体滑坡。基于空间计量学全局和局部空间自相关系数及其相关分析方法,以向家坝坝体下游坝后左岸人工高边坡为例,在传统研究只考虑二维坐标的情况下,进一步考虑不同测点的三维空间坐标,建立了考虑空间坐标的空间权重矩阵,计算了各个蓄水时段高边坡不同测点的外观变形数据的全局和局部空间自相关系数;对比了不同蓄水时段下游边坡外观变形的空间聚集性态,从而定位高边坡变形监测关键测点。研究结果表明:2种空间自相关系数可以有效探测变形数据的聚集程度,识别聚集区域;水库蓄水会在下游坡形成明显的空间聚集性变形,尤其是在蓄水初期变化最为剧烈,需要在该阶段加强观测。
Abstract
Reservoir impoundment has a great impact on engineering and geological environment around the reservoir, and would even give rise to landslide. By adopting global and local spatial autocorrelation coefficients and their analysis method in spatial economics, we established the spatial weight matrix in consideration of 3-D spatial coordinates of measuring points for Xiangjiaba downstream high slope. Furthermore, we calculated the global and local spatial autocorrelation coefficients of deformation data during impoundment, and compared the aggregation behavior of high-slope deformation during different impoundment periods so as to determine key measurement points. The results showed that the global and local spatial autocorrelation coefficients could effectively detect the aggregation behavior of high-slope’s deformation. Apparent aggregative deformation in downstream slope would be induced during impoundment, in particular, the initial period of impoundment, which should be monitored in emphasis.
关键词
向家坝水库 /
水库蓄水 /
下游高边坡 /
空间聚集性变形 /
空间权重矩阵 /
空间自相关系数
Key words
reservoir impoundment /
downstream high-slope /
visual deformation /
spatial weight matrix /
spatial autocorrelation coefficient
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
曹运江, 杨 浩, 黄润秋, 等. 岷江某水库蓄水运行期进水口高边坡变形特征模拟研究. 成都理工大学学报(自然科学版), 2015, 42(1): 34-42.
杨继红, 王俊梅, 董金玉,等. 水库蓄水过程中堆积体边坡瞬态稳定性分析. 岩土力学, 2011, 32(增1): 464-470.
宋丹青. 水库蓄水对库岸边坡稳定性的影响. 兰州:兰州大学, 2013.
王士天, 刘汉超, 张倬元. 大型水域水岩相互作用及其环境效应研究. 地质灾害与环境保护, 1997, 8(1): 69-89.
刘大有, 陈慧灵, 齐 红, 等. 时空数据挖掘研究进展. 计算机研究与发展, 2013, 50(2): 225-239.
TOBLER W. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 1970, 46(2): 234-240.
MURRAY A T, GOBER P, ANSELIN L, et al. Spatial Optimization Models for Water Supply Allocation. Water Resources Management, 2012, 26(8): 2243-2257.
BARBARO L, ROSSI J P, VETILLARD F, et al. The Spatial Distribution of Birds and Carabid Beetles in Pine Plantation Forests: the Role of Landscape Composition and Structure. Journal of Biogeography, 2007, 34(4): 652-664.
SIFAKI-PISTOLLA D, KARAGEORGOS S A, KOULENTAKI M, et al. Geoepidemiology of Hepatocellular Carcinoma in the Island of Crete, Greece. A Possible Role of Pesticides. Liver International, 2016, 36(4): 588-594.
熊昌盛, 谭 荣, 岳文泽. 基于局部空间自相关的高标准基本农田建设分区. 农业工程学报, 2015, 31(22): 276-284.
王建华, 秦其明, 杜 宸, 等. 局部空间自相关统计洪水灾害影像分析. 测绘科学, 2015, 40(10): 26-29.
杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性. 生态学报, 2014, 34(13): 3771-3778.
HAO Qing-min. Review on Spatial Econometric Analysis∥Proceedings of 2008 International Seminar on Future Information Technology and Management Engineering. Leicestershire, United Kingdom. IEEE Conference Publications, November 20, 2008: 644-647.
王佳璆, 邓 敏, 程 涛, 等. 时空序列数据分析和建模. 北京: 科学出版社, 2012.
ELHORST J P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Heidelberg, Berlin: Springer, 2014.
ELHORST J P. Dynamic Models in Space and Time. Geographical Analysis, 2001, 33(2): 119-140.
ANSELIN L. The Local Indicators of Spatial Association-LISA. Geographical Analysis, 1995, 27(2): 93-115.
基金
国家自然科学基金重点项目(41323001, 51139001);高等学校博士学科点专项基金项目(20120094110005, 20120094130003, 20130094110010);江苏省杰出青年基金项目(BK20140039);水利部土石坝破坏机理与防控技术重点实验室基金项目(KY914002)