黏土水泥膏浆性能优越,可广泛用于土木、水利等工程的防渗堵漏和基础加固,其流变性能对灌浆工程施工及灌浆效果有重要影响。利用Brookfield+R/S流变仪对其流变参数进行测试,研究固化剂掺量、温度及时间等因素对流变性能的影响。结果表明:膏浆的黏度及屈服应力均随时间增大;固化剂掺量为水泥质量的1.0%左右时的膏浆为Herschel-Bulkey流体,并且具有触变性,防渗堵漏效果最佳;温度在5~40 ℃之间,温度影响膏浆的黏度及屈服应力,但不影响膏浆的流型,温度越高,黏度越大,28 ℃下的屈服应力最大。室内灌浆模拟试验及抗冲试验,证明其扩散距离可控,抗水冲释性能强,与纯水泥膏浆相比,初始屈服应力及黏度更大,触变性可控,浆体的稳定性更好。黏土水泥膏浆是含水及大孔隙地层、松软地层等复杂地层灌浆防渗堵漏的优选材料。
Abstract
Plaster slurry of clay-cement can be widely used in seepage and leakage prevention and foundation strengthening in civil and hydraulic engineering. Its rheological properties have important influence on the construction and performance of grouting projects. The influences of curing agent’s content, temperature, and time on the rheological properties of clay-cement plaster slurry were researched by testing the rheological parameters through Brookfield+R/S rheometer. Results revealed that 1) the viscosity and yield stress of the slurry increased with time; 2) when the dosage of curing agent reached about 1.0% of cement mass, plaster slurry had optimum anti-seepage performance and belonged to Herschel-Bulkey fluid; 3) at temperature ranging from 5-40 ℃, temperature had impact on the viscosity and yield stress of the slurry, but had no effect on the fluidity, and the higher temperature led to larger viscosity, and in the meantime yield stress reached its maximum at 28 ℃. Through indoor grouting simulation test and anti-scour test, clay-cement plaster slurry was verified to have good water-dilution resistance and controllable diffusion range. Compared with pure cement slurry, clay-cement plaster slurry has larger initial yield stress and viscosity and better stability with controllable thixotropy. It is a preferred material for the seepage prevention in grouting of complex strata such as water-bearing and large-porosity strata as well as loose and soft strata.
关键词
黏土水泥膏浆 /
流变性能 /
触变性 /
灌浆工程 /
松软地层
Key words
plaster slurry of clay-cement /
rheological properties /
thixotropy /
grouting engineering /
weak stratum
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张贵金,胡荣宗,钟 平,等. 新型可控性黏土水泥膏浆试验研究[J]. 水利水电技术,2013,44(2):66-70.
[2] 赵迪华,杨松林,张贵金. 控制灌浆技术在托口水电站河湾防渗工程中的应用[J]. 水利水电技术,2014,45(12):7-10.
[3] 王小萍,殷素红,赵三银,等. 碱激发碳酸盐矿-矿渣复合灌浆材料流变性能的研究[J]. 长江科学院院报,2006,23(6):80-83.
[4] 马昆林,龙广成,谢友均,等.水泥-粉煤灰-石灰石粉复合浆体的流变性能[J]. 硅酸盐学报,2013,41(5): 582-587,596.
[5] 李术才,韩伟伟,张庆松,等. 地下工程动水注浆速凝浆液黏度时变特性研究[J]. 岩石力学与工程学报,2013,32(1):1-7.
[6] 王星华. 黏土-水泥浆流变性及其影响因素研究[J]. 岩土工程学报,1997,19(5):45-50.
[7] 闫加旺,韦江雄,庄梓豪,等. 加气混凝土料浆的流变性能及其与发气和稠化速率的关系[J]. 混凝土,2009,9(11):27-30.
[8] 王发洲,王 涛,胡曙光,等. CA砂浆的流变特性[J]. 武汉大学学报(工学版),2008,41(4):69-72.
[9] 何 涛,赵青林,徐奇威,等. 不同外加剂对水泥基灌浆材料流变性能的影响[J]. 硅酸盐通报,2010,29(3):728-733.
[10]张景富,徐 明,高丽丽,等. 温度及外加剂对水泥浆流变性的影响[J]. 钻井液与完井液,2003,20(3):35-38.
[11]何世明,刘崇建,邓建民,等. 温度压力对水泥浆流变性的影响规律研究[J]. 石油钻采工艺,1999,21(6):7-12.
[12]张贵金,杨松林,陈安重,等. 适应深厚复杂岩土层防渗灌浆的可控性黏土水泥稳定浆材及快速配制[J]. 岩石力学与工程学报,2012,31(增1):3428-3436.
[13]张贵金,许毓才,陈安重,等. 一种适合松软地层高效控制灌浆的新工法——自下而上、浆体封闭、高压脉动灌浆[J]. 水利水电技术,2012,43(3):38-41.
[14]孙 亮,夏可风.灌浆材料及应用[M].北京:中国电力出版社,2013:43-65.
基金
国家自然科学基金项目(51279019);湖南省重大水利科技项目(湘财农指[2015]245号)