水利水电灌浆工程具有“作业隐蔽、数据量大、经验性强”等特点,长期以来其质量控制成为行业面临的难题。以建筑信息模型(BIM)核心价值理念为导向,以提高灌浆分析效率与效果为目标,遵循全过程“实时监控、快速分析、动态反馈”的思路,研究了基于地质信息模型(GIM)的灌浆工程三维可视化分析方法,包括GIM模型的构建与分析方法、灌浆工程参数化与可视化技术、灌浆过程实时监控与可视化技术等,并在此基础上研发了基于GIM的灌浆工程三维可视化分析系统。工程实践表明,该方法可实现事前灌浆孔地质条件的预测预判、事中灌浆过程的实时监控与异常诊断、事后成果数据的快速分析与评价,为隐蔽灌浆工程的质量控制与管理提供了可靠技术支撑。
Abstract
The quality control of water conservancy and hydropower grouting project has been a difficulty in the industry for a long time because of its hidden operation, large amount of data and strong experience. Guided by the core values of BIM (Building Information Modeling), the three-dimensional visualization analysis method of grouting engineering based on GIM (Geological Information Modeling) is researched in this paper to improve the efficiency and effectiveness of grouting analysis following the idea of “real-time monitoring, rapid analysis and dynamic feedback” in the whole process. The analysis method includes the construction and analysis of GIM model, the parameterization and visualization of grouting engineering, the real-time monitoring and visualization of grouting process, etc. On this basis, a 3D visualization analysis system of grouting engineering based on GIM is developed. Engineering practice manifests that the present method could accomplish the prediction of geological conditions of grouting holes in advance, the real-time monitoring and abnormal diagnosis in the grouting process, and the rapid analysis and evaluation of the results after the process, hence offering reliable technical support for the quality control and management of concealed grouting project.
关键词
灌浆工程 /
地质信息模型(GIM) /
三维可视化分析 /
灌浆异常 /
乌东德水电站
Key words
grouting work /
geological information model(GIM) /
three-dimensional visualization analysis /
grouting abnormality /
Wudongde Hydropower Station
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 夏可风. 打造中国灌浆的升级版[C]//中国水利学会地基与基础工程专业委员会第13次全国学术研讨会论文集. 成都:中国水利水电出版社,2015:16-19.
[2] 夏可风. 夏可风灌浆技术文集[M]. 北京: 中国水利水电出版社, 2015:134-145.
[3] 樊启祥,黄灿新,蒋小春,等. 水电工程水泥灌浆智能控制方法与系统[J]. 水利学报,2019, 50(2): 165-174.
[4] 闫福根. 水利水电工程坝基灌浆统一模型与分析理论及应用[D]. 天津:天津大学, 2014.
[5] 饶小康,姚振和. 溪洛渡水电站灌浆网络管理信息系统设计与开发[J]. 水电能源科学,2013, 31(9): 186-188.
[6] 饶小康,王 晖. 基于B/S结构的灌浆数字化系统在水利工程中的应用[J]. 长江科学院院报,2013, 30(2): 79-83.
[7] 闫福根,钟登华,任炳昱,等. 基于B/S结构的三维交互式灌浆可视化系统的研制及应用[J]. 水利水电技术,2014, 45(11): 66-69.
[8] MALLET J L. Discrete Modeling for Nature Objects[J]. Mathematical Geology,1997, 29(2): 199-218.
[9] 贾新会,王小兵,张春峰,等. 基于DSI插值的复杂地质体流程化建模技术在工程中的应用[J]. 西北水电,2016(6): 90-93.
[10] 黄少华,王进丰,黄会勇,等. CATIA在渠道施工详图三维设计中的应用[J]. 长江科学院院报,2014, 31(6): 99-103.
[11] BRUCE D A. Computer Monitoring in the Grouting Industry[C]//Geotechnical Engineering State of the Art and Practice: Keynote Lectures from GeoCongress 2012 (Geotechnical Special Publication (GSP) 226). American Society of Civil Engineers, Oakland, California. March 25-29, 2012: 549-564.
[12] 向家菠,王团乐,倪凯军,等. 乌东德水电站大坝防渗帷幕成幕影响地质因素分析及处理措施[J]. 吉林大学学报(地球科学版),2018, 48(5): 1581-1588.
基金
中国三峡建设管理有限公司科研项目(WDD/0543)