长江科学院院报 ›› 2023, Vol. 40 ›› Issue (5): 85-93.DOI: 10.11988/ckyyb.20211402

• 岩土工程 • 上一篇    下一篇

冲击荷载下珊瑚礁灰岩动态力学特性及损伤特征

雷学文1, 李浩明1,2, 孟庆山2, 洪胜男2, 周皓然2, 蒋雪2,3   

  1. 1.武汉科技大学 城市建设学院,武汉 430065;
    2.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;
    3.桂林理工大学 土木与建筑工程学院,广西 桂林 541004
  • 收稿日期:2021-12-31 修回日期:2022-03-08 出版日期:2023-05-01 发布日期:2023-05-22
  • 通讯作者: 孟庆山(1974-),男,河北玉田人,研究员,博士,博士生导师,主要从事珊瑚岛礁工程地质和力学特性方面的研究工作。E-mail: qsmeng@whrsm.ac.cn
  • 作者简介:雷学文(1962-),男,湖北罗田人,教授,博士,博士生导师,主要从事岩土力学与岩土工程方面的教学与科研工作。E-mail: leixuewen@wust.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(41877260,41877267);中国科学院战略性先导科技专项(A 类) (XDA13010201)

Dynamic Mechanical Properties and Damage Characteristics of Coral Reef Limestone under Impact Loading

LEI Xue-wen1, LI Hao-ming1,2, MENG Qing-shan2, HONG Sheng-nan2, ZHOU Hao-ran2, JIANG Xue2,3   

  1. 1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China;
    2. State Key Laboratory of Geotechnical Mechanics and Engineering, Wuhan Institute of Geotechnical Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    3. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
  • Received:2021-12-31 Revised:2022-03-08 Online:2023-05-01 Published:2023-05-22

摘要: 为研究2种珊瑚礁灰岩在冲击荷载下的动态力学特性和损伤特征,利用分离式霍普金森压杆(SHPB)试验系统,对珊瑚格架灰岩和珊瑚砂屑灰岩进行10~190 s-1应变率范围内的冲击压缩试验,得到不同应变率下珊瑚礁灰岩的应力-应变曲线,分析试验中试样的动态峰值应力和弹性模量的应变率效应及能量耗散规律,并结合高分辨率CT扫描和图像处理技术,揭示试样的损伤破坏特征。结果表明:格架灰岩的动态应力-应变曲线具有明显的弹性变形阶段,而砂屑灰岩的压密阶段较为明显;动态峰值应力随应变率的增大呈幂函数增长,格架灰岩的应变率效应较明显,动态弹性模量与应变率满足负指数关系;格架灰岩对能量的吸收能力整体强于砂屑灰岩;珊瑚礁灰岩损伤裂纹多沿生物组分胶结差、贯通孔隙多的部位发生,中高应变率下格架灰岩的损伤裂纹以骨架扩展贯通为主,呈脆性劈裂破坏,而砂屑灰岩主要发生穿孔传播,呈压碎破坏模式,研究成果对岛礁工程建设中动力灾害的预防具有一定的指导意义。

关键词: 动态峰值应力, 损伤特征, 珊瑚礁灰岩, 应变率效应, 能量耗散, 动力灾害预防

Abstract: To investigate the dynamic mechanical properties and damage characteristics of two types of coral reef limestones under impact loading, split Hopkinson pressure bar (SHPB) test apparatus was used to conduct impact compression tests on coral lattice limestone and coral clastic limestone in the strain rate range of 10~190 s-1. The stress-strain curves of reef limestone under different strain rates were analyzed to obtain the strain rate effect and energy dissipation of dynamic peak stress and elastic modulus. In addition, the damage and failure characteristics of samples were revealed using high-resolution CT scanning and image processing technology. Results show that the dynamic stress-strain curves of lattice limestone exhibit an obvious elastic deformation stage, while the compaction stage of clastic limestone is more apparent. Furthermore, the dynamic peak stress increases as a power function with the increase of strain rate, and the strain rate effect of lattice limestone is stronger. The relationship between dynamic elastic modulus and strain rate is negatively exponential. Moreover, the energy absorption capacity of lattice limestone is stronger than that of clastic limestone. The damage cracks of reef limestone are mostly found along sites with poor cementation of biological components or many penetrative pores. Under medium and high strain rates, the damage cracks of lattice limestone mainly undergo matrix propagation and transfixion, presenting brittle fracture failure, and clastic limestone perforation propagation, presenting crushing failure mode. The research findings are of guiding significance for preventing dynamic disasters in island and reef engineering construction.

Key words: dynamic peak stress, damage characteristics, coral reef limestone, strain rate effect, energy dissipation, dynamic disaster prevention

中图分类号: