长江科学院院报 ›› 2021, Vol. 38 ›› Issue (11): 11-17.DOI: 10.11988/ckyyb.20210206

• 水资源 • 上一篇    下一篇

基于用水效益函数的城市干旱损失评估方法

孙可可1,2, 姚立强1,2, 许继军1,2, 袁喆1,2, 屈艳萍3   

  1. 1.长江科学院 水资源综合利用研究所,武汉 430010;
    2.流域水资源与生态环境科学湖北省重点实验室,武汉 430010;
    3.中国水利水电科学研究院,北京 100038
  • 收稿日期:2021-03-09 修回日期:2021-05-12 出版日期:2021-11-01 发布日期:2021-11-08
  • 通讯作者: 姚立强(1985-),男,江西宜春人,正高级工程师,博士,主要从事流域水文循环与水资源高效利用研究及水资源管理与保护规划工作。E-mail: yaoliqiang@mail.crsri.cn
  • 作者简介:孙可可(1988-),男,安徽阜阳人,工程师,硕士,主要从事流域水文模拟及干旱评估研究。E-mail:kewater@yeah.net
  • 基金资助:
    国家重点研发计划项目(2017YFC1502404);长江科学院院级创新团队项目(CKSF2017061/SZ)

Evaluating Urban Drought Loss Based on Water Use Benefit Function

SUN Ke-ke1,2, YAO Li-qiang1,2, XU Ji-jun1,2, YUAN Zhe1,2, QU Yan-ping3   

  1. 1. Water Resources Utilization Department, Yangtze River Scientific Research Institute, Wuhan 430010, China;
    2. Hubei Provincial Key Laboratory of Basin Water Resources and Eco-environmental Sciences, Wuhan 430010, China;
    3. China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2021-03-09 Revised:2021-05-12 Online:2021-11-01 Published:2021-11-08

摘要: 为定量评价干旱对城镇地区缺水和产业损失的影响,选取以地表径流为供水水源的湘江干流株洲段为研究区,基于水量平衡原理构建城市干旱指标(CWSI),以月为尺度,计算不同来水频率下区域可供水量、不同产业类型需水量。分别从水量短缺、水位取水困难两种角度,计算湘江株洲段1960—2018年历史来水情景下月尺度区域缺水量和干旱指数(CWSI)。采用经济学领域HARA函数反映经济效益随用水量的变化关系,进而得到缺水量-干旱损失响应关系。在此基础上,构建基于效益最优的缺水量配置动态优化模型,计算不同干旱程度下不同类型产业缺水配置规模,并采用抗旱定额法对配置成果进行验证,进而计算缺水量对应的干旱损失。依据CWSI指数变化,计算不同干旱等级下不同类型产业缺水损失;在多年平均缺水损失曲线基础上,依据当前月来水变化和前期来水亏缺,绘制典型年干旱动态损失变化曲线。研究结果表明:城市干旱具有边际损失高、发生频率低的特点,符合基于HARA用水效益函数构建的缺水损失变化规律,研究成果可为城市干旱风险评价、预警及抗旱定额管理提供理论依据。

关键词: 城市干旱, 干旱损失评估, HARA函数, 抗旱定额, 干旱指数

Abstract: To quantitatively assess the impact of drought on water shortage and industrial loss in urban areas, the urban drought index (CWSI) is constructed based on the water balance principle to calculate the regional available water supply and water demand of different industrial types under varying water inflow frequency on a monthly scale. The Zhuzhou segment of Xiangjiang River with surface runoff as the water supply source is selected as the research area. The monthly regional water shortage and drought index (CWSI) of Zhuzhou segment from 1960 to 2018 were calculated from the perspectives of water shortage and water withdrawal difficulty. Moreover, the response relationship between water shortage and drought loss is obtained by using HARA (Hyperbolic Absolute Risk Aversion) function, which is commonly used in the field of economics, to reflect the relationship between economic benefits and water consumption. On this basis, a dynamic optimization model of water shortage allocation based on optimal benefits is constructed to calculate the water shortage allocation of various industries under different drought degrees. The drought quota method is used to verify the allocation results, and then the drought loss corresponding to water shortage is calculated. According to the change of CWSI, the drought loss of various industries under different drought degrees is calculated. Based on the curve of annual average drought loss, the dynamic drought loss curve of typical years can be acquired according to the current monthly water change and the previous water shortage. The results demonstrate that urban drought is of high marginal loss and low frequency, which conforms to the change law of water shortage and drought loss based on HARA function. The research findings offer theoretical basis for urban drought risk assessment, early warning and drought quota management.

Key words: urban drought, drought loss assessment, HARA function, drought quota, drought index

中图分类号: