长江科学院院报 ›› 2021, Vol. 38 ›› Issue (8): 66-71.DOI: 10.11988/ckyyb.20200508

• 工程安全与灾害防治 • 上一篇    下一篇

基于FCM-XGBoost的大坝变形预测模型

杨晨蕾1,2, 包腾飞1,2,3   

  1. 1.河海大学 水利水电学院,南京 210098;
    2.河海大学 水文水资源与水利工程科学国家重点实验室,南京 210098;
    3.三峡大学 水利与环境学院,湖北 宜昌 443002
  • 收稿日期:2020-06-02 修回日期:2020-08-21 出版日期:2021-08-01 发布日期:2021-08-06
  • 通讯作者: 包腾飞(1974-),男,湖北黄冈人,教授,博士,博士生导师,研究方向为水工结构及岩土工程的安全监控、光纤传感器在结构健康监测中的应用研究。E-mail: baotf@hhu.edu.cn
  • 作者简介:杨晨蕾(1994-),女,河北邯郸人,硕士研究生,研究方向为水工结构安全监控。E-mail: 1026889945@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFC1508603,2016YFC0401601);国家自然科学基金资助项目(51579086,51739003)

Dam Deformation Prediction Model Based on FCM-XGBoost

YANG Chen-lei1,2, BAO Teng-fei1,2,3   

  1. 1. College of Water Conservancy and Hydropower Engineering,Hohai University, Nanjing 210098, China;
    2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University, Nanjing 210098, China;
    3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
  • Received:2020-06-02 Revised:2020-08-21 Published:2021-08-01 Online:2021-08-06

摘要: 变形是评价大坝是否安全的重要指标之一。随着变形监测测点的不断增加,实现对所有测点的分析意味着消耗大量时间,往往会出现预报不及时的问题;另一方面,传统机器学习算法的引入虽然提高了预测精度,但参数选取不佳时对结果影响很大且建模过程十分复杂。引入模糊C-均值聚类(FCM)和极端梯度提升算法(XGBoost),首先对大坝的变形测点根据变化规律的相似性进行分区,然后针对每个分区建立XGBoost变形预测模型。以拱坝垂线径向变形监测资料为例,验证了聚类结果的可靠性,并将XGBoost变形预测模型结果与随机森林模型结果对比。结果表明,XGBoost模型在数据预处理、建模时间及预测精度上,都体现出更大的优势。

关键词: 大坝变形, 预测精度, FCM, XGBoost, 测点分区

Abstract: Deformation is a crucial indicator to evaluate the safety of dam. With the increase in the number of deformation measuring points, however, prediction often lags because analyzing all the measuring points is time costly. Moreover, despite that traditional machine learning algorithms have ameliorated prediction accuracy, unreasonable selection of parameters has a great impact on prediction results and the process of establishing model is extremely complicated. In view of this, we introduced the fuzzy C-means clustering (FCM) and eXtreme Gradient Boosting algorithm (XGBoost) to partition the deformation measuring points according to the similarity of the change rules, and then established XGBoost prediction model for each partition. Taking the perpendicular line deformation monitoring data of the arch dam as an example, we verified the reliability of the clustering results and compared the XGBoost result with that of random forest prediction model. Result suggest superiority of the XGBoost prediction model in data pretreatment, modeling time, and prediction accuracy.

Key words: dam deformation, prediction accuracy, FCM, XGBoost, partitions of measuring points

中图分类号: