长江科学院院报 ›› 2017, Vol. 34 ›› Issue (8): 41-46.DOI: 10.11988/ckyyb.20160419

• 工程安全与灾害防治 • 上一篇    下一篇

基于改进粒子群算法的大坝监控加权统计模型

王伟, 徐锴, 方绪顺, 钟启明   

  1. 南京水利科学研究院 岩土工程研究所,南京 210029
  • 收稿日期:2016-04-29 修回日期:2016-06-01 出版日期:2017-08-01 发布日期:2017-08-18
  • 作者简介:王 伟(1979-),男,江苏高邮人,高级工程师,博士,主要从事大坝安全监控理论与近海岸工程检测研究,(电话)025-85829545(电子信箱)wwgi555@163.com。

Weighted Statistical Model of Dam Monitoring Based on Improved Particle Swarm Optimization Algorithm

WANG Wei, XU Kai, FANG Xu-shun, ZHONG Qi-ming   

  1. Department of Geotechnical Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
  • Received:2016-04-29 Revised:2016-06-01 Online:2017-08-01 Published:2017-08-18
  • Supported by:
    国家自然科学基金项目(51379129); 水利部公益性行业科研经费项目(sg315002)

摘要: 用于大坝安全监控的加权统计模型主要依据工程经验确定各因子的权重,这种求解方式易导致部分因子信息的缺失。根据大坝安全监测数据,应用粒子群算法可优化确定加权统计模型中各参数的最优解,但对于高维度优化问题,该算法存在收敛速度慢、易陷入局部最小等不足。针对这些不足,考虑粒子种群平均位置信息的影响,提出一种新的改进粒子群算法,利用单体与种群平均位置的距离信息确定两者之间的学习因子。土石坝工程实例分析结果表明:改进粒子群算法加强了种群跳出局部最小的能力,所得加权统计模型的权重符合工程实际情况。尤其在大坝运行初期,监测资料较少的情况下,基于改进粒子群算法的大坝监控模型具有较高的预测精度和预报能力,可为大坝监控领域提供一种新的数据分析方法。

关键词: 土石坝, 加权统计模型, 改进粒子群算法, 优化计算, 权重系数

Abstract: The weights of all factors in weighted statistical model of dam monitoring were determined with engineering experience, which could result in the lack of the information of some factors. According to monitoring data, the regression coefficients and weights of weighted statistical model can be objectively determined by Particle Swarm Optimization algorithm, but for high dimension optimization, the algorithm has some deficiencies such as slow convergence and local minimums. In view of this, an improved Particle Swarm Optimization algorithm in consideration of the information of average location in particles is proposed. The learning factors are determined based on the information of average location in single particle and particle groups. The analysis results of earth-rock dam example show that the improved Particle Swarm Optimization algorithm enhances the ability of jumping out of the local minimum. The factors of weighted statistical model of safety monitoring for earth-rock dam are consistent in actual situation with this improved algorithm. Especially in the early stages of operation with few monitoring data, dam monitoring model based on improved Particle Swarm Optimization algorithm has better precision. The improved algorithm could be a new method of data analysis in dam monitoring field.

Key words: earth-rock dam, weighted statistical model, improved Particle Swarm Optimization algorithm, optimization computation, weight coefficient

中图分类号: