长江科学院院报 ›› 2012, Vol. 29 ›› Issue (7): 10-14.DOI: 10.3969/j.issn.1001-5485.2012.07.003

• 水资源与环境 • 上一篇    下一篇

离散Hopfield神经网络在湖库营养状态评价中的应用——以全国24个湖库富营养化等级评价为例

崔东文   

  1. 文山州水务局,云南 文山663000
  • 收稿日期:2011-05-06 出版日期:2012-07-01 发布日期:2012-07-01
  • 作者简介:崔东文(1978-),男,云南玉溪人,高级工程师,主要从事水资源水环境研究及水资源保护等工作

Application of Discrete Hopfield Neural Network to the Assessment of Nutritional Status in Lakes and Reservoirs: A Case Study on 24 Lakes and Reservoirs in China

CUI Dong-wen   

  1. Water Authority of Wenshan Autonomous Prefecture, Wenshan663000,China
  • Received:2011-05-06 Published:2012-07-01 Online:2012-07-01

摘要: 基于离散Hopfield神经网络联想记忆特性,建立了湖库富营养化等级综合评价模型,对全国24个湖库进行富营养化等级综合评价,并与文献投影寻踪法、评分指标法和LM-BP网络法的评价结果进行比较。结果表明:①离散Hopfield神经网络运用于湖库营养化等级评价具有简单、直观,容易实现等优点,其评价结果令人满意;②一般离散Hopfield神经网络并非适用于任何富营养化等级评价,当评价对象单项指标(因子)间存在较大差异时,对象将得不到正确的评价。

关键词: 富营养化评价, 人工神经网络, Hopfield网络, 湖库

Abstract: Based on the associative memory of discrete Hopfield neural network, a model to  comprehensively assess the eutrophication level of lakes and reservoirs is established. Twenty-four lakes and reservoirs in China are evaluated through this model, and the results are compared with those of  projection pursuit method,  score index method, and LM-BP network method. The results show that discrete Hopfield neural network is simple, intuitive, and easy to implement, with only a few  iterations leading to satisfactory and objective results. However, not all eutrophication level assessments could be achieved through general discrete Hopfield neural network. When there is a big difference between each single index (factor), correct assessment could not be achieved.

Key words: eutrophication assessment, ANN (artificial neural network), Hopfield network, lakes and reservoirs

中图分类号: