邵 磊 , 周孝德 , 杨方廷 , 韩 军
长江科学院院报. 2010, 27(5): 29-33.
建立了基于实码加速遗传算法(real coded accelerating genetic algorithm, RAGA)的灰色 (grey model,GM(1,1)) 径向基函数 (radial basis function, RBF) 神经网络预测模型。该模型克服了传统 GM(1,1) 模型存在明显系统误差和容易陷入局部最优的缺点 , 具有 GM(1,1) 模型对数据确定性方面把握的优点 , 同时融合了人工神经网络在不确定因素预测方面的优势。 运用该模型对山西工业需水量进行预测 , 预测表明该模型相比单个传统模型具有相对较高的预测精度,验证了 GM(1,1)-RBF 组合模型在中长期需水预测应用中的合理性,对相关政策的制定有一定参考价值。