长江科学院院报 ›› 2012, Vol. 29 ›› Issue (11): 117-121.DOI: 10.3969/j.issn.1001-5485.2012.11.026

• 信息技术应用 • 上一篇    下一篇

基于序贯决策融合的变化检测方法研究

李 雪1,舒 宁2,刘小利1   

  1. 1.中国地震局地震研究所 地震大地测量重点实验室,武汉 430071; 2.武汉大学 遥感信息工程学院,武汉  430079
  • 收稿日期:2012-08-13 出版日期:2012-11-01 发布日期:2012-11-15
  • 作者简介:李雪(1981-), 男, 湖北武汉人,助理研究员,博士, 主要从事遥感图像处理和遥感影像解译方法及应用的研究
  • 基金资助:

    中国地震局地震研究所所长基金(IS201056076)

Change Detection Method Based on Sequential Decision Fusion

LI Xue1, SHU Ning2, LIU Xiao-li1   

  1. 1.Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan  430071, China; 2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan  430079, China
  • Received:2012-08-13 Online:2012-11-01 Published:2012-11-15

摘要: 根据序贯分析方法对决策树变化检测方法进行了改进,提出了一种基于序贯决策融合的变化检测方法。该方法利用决策树算法具有可处理连续型和离散型数据的特性,将前一次决策树判别的结果作为输入特征,与原输入特征数据组成新的特征向量参与训练生成新的决策树。通过反复迭代使决策树的判别结果达到稳定状态,以此减小决策树变化检测方法中影响结果精度的不确定性。实验结果验证了本文方法的可行性与有效性,为提高遥感影像变化检测结果的准确性提供了一条新的技术途径。

关键词: 决策树, 序贯分析, 决策融合, 变化检测

Abstract: A change detection method based on sequential decision fusion is proposed by improving the decision tree with sequential analysis. Providing that decision tree algorithm can be used to process both continuous data and discrete data, an iterative process is designed to generate new input variables, which are composed of the previous input variables and the classification results. The decision tree is trained by the iterative process until the output variables are stable. The proposed method can reduce the uncertainty in the decision-tree-based change detection method. Experiments prove the feasibility and effectiveness of this method, and the results show that it provides a new approach to improve the accuracy of change detection for remote sensing images.

Key words: decision tree, sequential analysis, decision fusion, change detection

中图分类号: