基于抽稀HQP的GB-InSAR大气改正方法及其在边坡变形监测中的应用

王鹏, 李伟城, 段杭, 柯传芳, 葛礼呈, 金霄

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 156-163.

PDF(11539 KB)
PDF(11539 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (3) : 156-163. DOI: 10.11988/ckyyb.20231211
工程安全与灾害防治

基于抽稀HQP的GB-InSAR大气改正方法及其在边坡变形监测中的应用

作者信息 +

GB-InSAR Atmospheric Correction Method Based on Downsampled HQPs and Its Application to Slope Deformation Monitoring

Author information +
文章历史 +

摘要

在库坝区域边坡的连续变形监测应用中,地基合成孔径雷达干涉测量(GB-InSAR)容易受到测区大气环境变化干扰,导致其干涉图序列变形解算结果不够精确;同时大数量的连续GB-SAR影像处理过程较为耗时,影响了GB-InSAR整体解算效率和准实时的变形分析应用需求。针对上述问题,在常规多项式大气改正方法的基础上,引入了基于相位梯度的均匀格网采样法和干涉图叠加法,构建了一种基于抽稀高质量像元(HQP)的多项式大气改正方法,并将该方法应用于黄登水电站施工期右岸高边坡变形监测中。分析结果表明,二元多项式大气模型的RMSE均值为0.039 5 rad,明显优于一元模型和其他常规大气改正方法。该抽稀HQP方法RMSE均值为0.024 0 rad,同抽稀前精度相当,但整体解算时间由2.32 h大幅缩减至0.80 h,说明该方法能够在保证建模精度的基础上显著提高GB-SAR连续影像大气改正处理效率,可为边坡安全监测提供有效技术支持。

Abstract

Continuous slope monitoring in reservoirs and dams using ground-based synthetic aperture radar interferometry (GB-InSAR) is vulnerable to atmospheric environmental fluctuations. These fluctuations can cause inaccuracies in deformation results derived from interferogram sequences. Moreover, processing large volumes of continuous GB-SAR images is time-consuming, which negatively affects the overall efficiency of GB-InSAR and the feasibility of quasi-real-time deformation analysis applications. To tackle these problems, this paper presents a uniform grid sampling method and interferometric stacking technique based on the phase gradient building on the conventional polynomial atmospheric correction method. A polynomial atmospheric correction method based on downsampled high-quality pixels (HQPs) is then constructed. This method is applied to monitor the deformation of the high slope on the right bank during the construction of the Huangdeng Hydropower Station. Experimental results show that the root mean square error (RMSE) of the binary polynomial model averages 0.039 5 rad, significantly outperforming that of the unitary model and other conventional correction methods. The average RMSE of the proposed method is 0.024 0 rad, comparable to the accuracy before downsampling. However, the overall solution time reduces notably from 2.32 h to 0.80 h. This indicates that the proposed method can significantly improve the efficiency of continuous image atmospheric correction while maintaining modeling accuracy, offering effective technical support for slope safety monitoring.

关键词

大气改正 / 地基合成孔径雷达干涉测量 / 抽稀高质量像元 / 二元多项式 / 变形监测

Key words

atmospheric correction / Ground-based interferometry Synthetic Aperture Radar / downsampled high-quality pixel / binary polynomial / deformation monitoring

引用本文

导出引用
王鹏, 李伟城, 段杭, . 基于抽稀HQP的GB-InSAR大气改正方法及其在边坡变形监测中的应用[J]. 长江科学院院报. 2025, 42(3): 156-163 https://doi.org/10.11988/ckyyb.20231211
WANG Peng, LI Wei-cheng, DUAN Hang, et al. GB-InSAR Atmospheric Correction Method Based on Downsampled HQPs and Its Application to Slope Deformation Monitoring[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(3): 156-163 https://doi.org/10.11988/ckyyb.20231211
中图分类号: P237 (测绘遥感技术)   

参考文献

[1]
刘学敏, 田林亚, 祖滢. 全局环境改正法和永久散射体法在地基合成孔径雷达大气改正中的应用[J]. 勘察科学技术, 2016(5):45-47,64.
(LIU Xue-min, TIAN Lin-ya, ZU Ying. Application of Global Environment Correction Method and Permanent Scatter Method in GBSAR Atmospheric Correction[J]. Site Investigation Science and Technology, 2016(5):45-47,64. (in Chinese))
[2]
NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent Scatterers Analysis for Atmospheric Correction in Ground-based SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7):1459-1471.
[3]
YANG H, LIU J, PENG J, et al. A Method for GB-InSAR Temporal Analysis Considering the Atmospheric Correlation in Time Series[J]. Natural Hazards, 2020, 104(2): 1465-1480.
[4]
ZHAO X, LAN H, LI L, et al. A Multiple-regression Model Considering Deformation Information for Atmospheric Phase Screen Compensation in Ground-based SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):777-789.
[5]
IZUMI Y, FREY O, BAFFELLI S, et al. Efficient Approach for Atmospheric Phase Screen Mitigation in Time Series of Terrestrial Radar Interferometry Data Applied to Measure Glacier Velocity[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7734-7750.
[6]
IZUMI Y, NICO G, SATO M. Time-series Clustering Methodology for Estimating Atmospheric Phase Screen in Ground-based InSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3072037.
[7]
LIU J, YANG H, CAI J, et al. Validation of the Phase Difference Method for Atmospheric Correction in GB-SAR[J]. Journal of Spatial Science, 2022, 67(3):523-536.
[8]
WANG P, XING C, PAN X, et al. Microdeformation Monitoring by Permanent Scatterer GB-SAR Interferometry Based on Image Subset Series with Short Temporal Baselines: The Geheyan Dam Case Study[J]. Measurement, 2021, 184: 109944.
[9]
DENG Y, HU C, TIAN W, et al. A Grid Partition Method for Atmospheric Phase Compensation in GB-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 3074161.
[10]
LI B, JIANG W, LI Y, et al. Comparison of Different Atmospheric Phase Screen Correction Models in Ground-based Radar Interferometry for Landslide and Open-pit Mine Monitoring[J]. International Journal of Remote Sensing, 2021, 42(15): 5925-5942.
[11]
徐甫, 王政, 李振洪, 等. 复杂环境下的地基雷达大气改正方法[J]. 武汉大学学报(信息科学版), 2023, 48(12): 2069-2081.
(XU Fu, WANG Zheng, LI Zhen-hong, et al. An Atmospheric Correction Method for Ground-based Radar under Complex Environment[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2069-2081. (in Chinese))
[12]
PIPIA L, FABREGAS X, AGUASCA A, et al. Atmospheric Artifact Compensation in Ground-based DInSAR Applications[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 88-9.
[13]
WANG P, XING C, PAN X. Reservoir Dam Surface Deformation Monitoring by Differential GB-InSAR Based on Image Subsets[J]. Sensors (Basel,Switzerland), 2020, 20(2): E396.
[14]
于勇, 王超, 张红, 等. 基于不规则网络下网络流算法的相位解缠方法[J]. 遥感学报, 2003, 7(6): 472-477.
(YU Yong, WANG Chao, ZHANG Hong, et al. A Phase Unwrapping Method Based on Network Flow Algorithm in Irregular Network[J]. Journal of Remote Sensing, 2003, 7(6): 472-477. (in Chinese))
[15]
刘文涛. 基于时序InSAR技术的矿区地面沉降监测与分析[D]. 西安: 西安科技大学, 2020.
(LIU Wen-tao. Monitoring and Analysis of Land Subsidence in Mining Area Based on Time Series InSAR Technology[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese))
[16]
晋良军, 张建忠, 李剑寒. 黄登水电站复杂地质条件下缆机边坡开挖支护设计[J]. 云南水力发电, 2022, 38(4): 117-122.
(JIN Liang-jun, ZHANG Jian-zhong, LI Jian-han. Support Design for Cable Crane Slope Excavation under Complex Geological Conditions of Huangdeng Hydropower Station[J]. Yunnan Water Power, 2022, 38(4): 117-122. (in Chinese))
[17]
王小升. 黄登水电站缆机平台边坡倾倒蠕变岩体开挖支护施工[J]. 云南水力发电, 2021, 37(11):146-148.
(WANG Xiao-sheng. Excavation and Support Construction of Overturning Creep Rock Mass on Cable Crane Platform Slope of Huangdeng Hydropower Station[J]. Yunnan Water Power, 2021, 37(11):146-148. (in Chinese))
[18]
周彩云. 黄登水电站右岸缆机平台边坡变形险情处理施工[J]. 水利水电施工, 2017(6):42-45.
(ZHOU Cai-yun. Theoretical Research in Urban Construction[J]. Water Conservancy and Hydropower Construction, 2017(6):42-45. (in Chinese))

基金

国家自然科学基金青年基金项目(41801381)
中国三峡建工(集团)有限公司科研项目(BHT/0931)

编辑: 罗玉兰
PDF(11539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/