梯级电站调峰驱动的河道洪水波传播特征分析

白治朋, 黄建平, 刘新健, 刘新波, 文勇波, 赵新益, 栾华龙, 杨忠勇

长江科学院院报 ›› 2025, Vol. 42 ›› Issue (2) : 91-99.

PDF(8711 KB)
PDF(8711 KB)
长江科学院院报 ›› 2025, Vol. 42 ›› Issue (2) : 91-99. DOI: 10.11988/ckyyb.20231129
水力学

梯级电站调峰驱动的河道洪水波传播特征分析

作者信息 +

Characteristics of Flood Propagation in River between Two Dams Driven by Hydropeaking Regulation in Cascade Reservoirs

Author information +
文章历史 +

摘要

基于三峡和葛洲坝电站2018年实测水位、流量数据和一维解析模型,重点讨论了梯级电站调峰驱动的洪水波在两坝间河道的传播过程。在三峡和葛洲坝同时进行日调峰的背景下,2个电站的出库流量均呈显著的日波动和半日波动现象,两电站的流量日波动幅度平均分别在1 500~2 000 m3/s和1 200~1 500 m3/s之间,黄陵庙和南津关两个水位站的水位日波动幅度均在0.5~0.8 m之间。基于一维解析模型能够很好地模拟和再现两坝间河道的水位和流量波动过程。模型模拟结果分析表明,两坝间河道洪水波以周期为1.2 h的高频驻波进行传播,驻波的最大水位和流量振幅分别约为2.1 cm和210 m3/s。该洪水波是由两个电站调峰流量共同驱动和叠加生成的,下游葛洲坝电站调峰时间对河道洪水波有显著影响,若将调峰时间由现行的0.6 h调整到1.2 h,洪水波振幅将显著增强。河道底摩擦因数对洪水波生成时的波高影响较小,但会影响洪水波在传播过程中的衰减速度。

Abstract

Based on measured water level and discharge data in 2018, this paper investigates the propagation of flood waves in the river reach between Three Gorges Dam and Gezhouba Dam driven by hydropeaking regulation by using a one-dimensional analytical model. During daily hydropeaking operations at both dams, the outflow exhibited significant diurnal and semi-diurnal fluctuations, ranging from 1 500 to 2 000 m3/s for Three Gorges Dam and 1 200 to 1 500 m3/s for Gezhouba Dam in average. Similarly, the water level at Huanglingmiao and Nanjinguan stations fluctuated by about 0.5-0.8 m daily. The one-dimensional analytical model accurately simulates the fluctuation of water level and discharge between the two dams. The simulation results indicate that flood waves in the river reach propagate as high-frequency standing waves with a period of 1.2 hours. The maximum amplitudes of the standing waves are approximately 2.1 cm for water level and 210 m3/s for flow discharge. The flood waves are superimposed by the hydropeaking operations of both dams, and the timing of regulation at Gezhouba Dam significantly affects flood wave propagation. Specifically, increasing the regulation time from 0.6 to 1.2 hours substantially enhances the flood wave amplitude. While bottom friction of river channel has a negligible impact on wave height, it accelerates the attenuation of flood waves during propagation.

关键词

电站调峰 / 洪水波 / 解析模型 / 驻波 / 波能衰减

Key words

hydropeaking regulation / flood wave / analytical model / standing wave / energy attenuation

引用本文

导出引用
白治朋, 黄建平, 刘新健, . 梯级电站调峰驱动的河道洪水波传播特征分析[J]. 长江科学院院报. 2025, 42(2): 91-99 https://doi.org/10.11988/ckyyb.20231129
BAI Zhi-peng, HUANG Jian-ping, LIU Xin-jian, et al. Characteristics of Flood Propagation in River between Two Dams Driven by Hydropeaking Regulation in Cascade Reservoirs[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(2): 91-99 https://doi.org/10.11988/ckyyb.20231129
中图分类号: TV147   

参考文献

[1]
ZARFL C, LEHNER B. Small Barriers Are a Big Deal for Europe Rivers[J]. Nature, 2020, 588: 395-96.
[2]
段文刚, 胡晗, 侯冬梅. 三峡大坝运行20年泄洪安全评价[J]. 长江科学院院报, 2024, 41(6):178-186.
摘要
近年来国内外高坝泄水建筑物破坏事故时有发生,三峡大坝泄洪流量和落差大,泄洪功率居世界第一,其泄洪安全备受关注。结合三峡大坝自2003年蓄水以来的历次水力学原型观测和以往水工模型试验结果,围绕泄水建筑物布置、泄流能力、动水压强、水流空化、水流掺气与通气风速、空蚀磨损、消能防冲7个要素指标,依据有关技术标准和工程经验建立了一套完整的高坝泄洪安全评价方法,提出了定性标准和量化阈值,并据此对三峡大坝深孔、表孔、排沙孔和排漂孔进行泄洪安全评价。结果表明: 大坝泄水建筑物布置是合理的; 大坝实际泄流量与设计值符合良好; 大坝泄洪流道未见空蚀磨损破坏;三峡大坝运行20 a,泄水建筑物和坝下消能区运行性态正常,泄洪安全可靠。
DUAN Wen-gang, HU Han, HOU Dong-mei. Evaluation of Flood Discharge Safety of Three Gorges Dam in Two Decades of Operation[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(6):178-186. ) (in Chinese)
[3]
COBAN H H. Hydropower Planning in Combination with Batteries and Solar Energy[J]. Sustainability, 2023, 15(13): 10002.
[4]
金海洋, 王立, 赵良元, 等. 丹江口水库消落带总氮和总磷变化特征及通量研究[J]. 长江科学院院报, 2023, 40(5):58-62.
摘要
开展丹江口水库消落带土壤总氮(TN)和总磷(TP)变化特征与通量研究,对明晰消落带污染输出特征、保护水库水质安全有着重要的实践作用。将丹江口水库划分为汉库和丹库两个区域,以不同区域内典型消落带为研究对象,监测分析了2020年9月—2021年9月不同时期不同区域消落带土壤TN和TP的变化特征,并通过收支平衡法构建模型,估算了丹江口水库消落带在不同时期的TN和TP通量。结果表明,2020年9—12月淹水期内,丹江口水库不同区域消落带TN、TP含量变化显著,汉库耕地和园地的TN、TP含量显著上升,其余区域消落带土壤均存在TN、TP流失现象。2021年3—6月落干期内,丹江口水库不同区域消落带TN、TP含量总体上呈现上升积累趋势。2020年9月—2021年9月,丹江口水库不同区域消落带TN、TP含量整体呈下降趋势。丹江口水库消落带在淹水期表现为氮和磷的释放源,TN通量834.66 t,TP通量10 422.12 t;在落干期表现为氮和磷的吸收汇,TN通量-8 623.69 t,TP通量-10 032.94 t。2020年9月—2021年9月,丹江口水库消落带总体上表现为氮和磷的释放源,TN通量20 122.22 t,TP通量1 509.52 t。丹江口水库消落带污染物释放对水库水质安全的风险不容忽视。
JIN Hai-yang, WANG Li, ZHAO Liang-yuan, et al. Variation Characteristics and Flux of IN and TP in Water Level Fluctuation Zone of Daniiangkou Reservoir[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5):58-62. ) (in Chinese)
[5]
GERNAAT D E H J, BOGAART P W, VAN VUUREN D P, et al. High-resolution Assessment of Global Technical and Economic Hydropower Potential[J]. Nature Energy, 2017, 2: 821-828.
[6]
SANTOS R E, PINTO-COELHO R M, FONSECA R, et al. The Decline of Fisheries on the Madeira River, Brazil: The High Cost of the Hydroelectric Dams in the Amazon Basin[J]. Fisheries Management and Ecology, 2018, 25(5):380-391.
[7]
DE LIMA R E, et al.DE LIMA PICANÇO J, DA SILVA A F, An Anthropogenic Flow Type Gravitational Mass Movement: The Córrego Do Feijão Tailings Dam Disaster, Brumadinho, Brazil[J]. Landslides, 2020, 17(12): 2895-2906.
[8]
LATRUBESSE E M, ARIMA E Y, DUNNE T, et al. Damming the Rivers of the Amazon Basin[J]. Nature, 2017, 546: 363-369.
[9]
张怡辉, 张明. 长江洪水期三峡工程对长江口水动力特性及污水稀释扩散影响的数值模拟研究[J]. 水动力学研究与进展A辑, 2011, 26(4):470-478.
ZHANG Yi-hui, ZHANG Ming. Numerical Simulation of Hydrodynamics and Waste Water Diffusion of Yangtze River Estuary Affected by Three Gorges Project in Flood Season[J]. Chinese Journal of Hydrodynamics, 2011, 26(4):470-478. (in Chinese))
[10]
黄仁勇, 王敏, 张细兵, 等. 三峡水库汛期“蓄清排浑”动态运用方式计算研究[J]. 长江科学院院报, 2020, 37(1):7-12.
摘要
在入库沙量大幅减少的背景下,三峡水库持续开展汛期中小洪水调度,增大了汛期库区泥沙淤积和防洪风险,减少了水库下泄大流量的机会。在三峡水库汛期,开展“蓄清排浑”泥沙调度方式动态运用研究有助于进一步优化三峡水库汛期调度方式。利用三峡水库干支流河道一维非恒定流数学模型,探索开展了三峡水库汛期 “蓄清排浑”动态运用方式计算研究,并提出了汛期“蓄清排浑”动态运用方案。计算结果表明:三峡水库汛期“蓄清排浑”动态运用方式可以同时兼顾排沙、发电和防洪,“蓄清”水位150 m要优于155 m,“蓄清”运行期间库水位可选择在145~150 m之间浮动运行;建议将寸滩含沙量达到2.0 kg/m<sup>3</sup>且当日寸滩站入库流量≥25 000 m<sup>3</sup>/s的时间作为水库增泄“排浑”的起始时间,将出库含沙量降至约0.1 kg/m<sup>3</sup>作为“排浑”调度结束重新进入“蓄清”调度的泥沙参考因素。研究成果可为三峡水库汛期优化调度提供参考。
HUANG Ren-yong, WANG Min, ZHANG Xi-bin, et al. Calculation and Study on Dynamic Operation Mode of Storing Clear Water and Releasing Muddy Water in the Three Gorges Reservoir in Flood Season[J]. Journal of Changjiang River Scientific Research Institute, 2020, 37(1):7-12. ) (in Chinese)
[11]
ALMEIDA R M, SHI Q, GOMES-SELMAN J M, et al. Reducing Greenhouse Gas Emissions of Amazon Hydropower with Strategic Dam Planning[J]. Nature Communications, 2019, 10(1): 4281.
Hundreds of dams have been proposed throughout the Amazon basin, one of the world's largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg COeq MWh, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg COeq MWh) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated.
[12]
XU D, GAO B, WAN X, et al. Influence of Catastrophic Flood on Microplastics Organization in Surface Water of the Three Gorges Reservoir, China[J]. Water Research, 2022, 211: 118018.
[13]
TARIQ M A U R, FAROOQ R, VAN DE GIESEN N. A Critical Review of Flood Risk Management and the Selection of Suitable Measures[J]. Applied Sciences, 2020, 10(23): 8752.
[14]
LAI X, YIN D, FINLAYSON B L, et al. Will River Erosion below the Three Gorges Dam Stop in the Middle Yangtze?[J]. Journal of Hydrology, 2017, 554: 24-31.
[15]
WANG T, LI Z, GE W, et al. Risk Consequence Assessment of Dam Breach in Cascade Reservoirs Considering Risk Transmission and Superposition[J]. Energy, 2023, 265: 126315.
[16]
浦伟伟. 葛洲坝水电站反调节研究[D]. 武汉: 华中科技大学, 2010.
( PU Wei-wei. Study on Anti-regulation of Gezhouba Hydropower Station[D]. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese))
[17]
SOUZA A J, HILL A E. Tidal Dynamics in Channels: Single Channels[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9): 2156-2202.23.
[18]
HILL A E, SOUZA A J. Tidal Dynamics in Channels: 2. Complex Channel Networks[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11201):1-9.
[19]
WINANT C D. Three-dimensional Tidal Flow in an Elongated, Rotating Basin[J]. Journal of Physical Oceanography, 2007, 37(9): 2345-2362.
[20]
WINANT C D. Three-dimensional Residual Tidal Circulation in an Elongated, Rotating Basin[J]. Journal of Physical Oceanography, 2008, 38(6): 1278-1295.
[21]
YANG Z, ZHU Y, JI D, et al. Discharge and Water Level Fluctuations in Response to Flow Regulation in Impounded Rivers: an Analytical Study[J]. Journal of Hydrology, 2020, 590: 125519.
[22]
杨忠勇, 钱门亮, 纪道斌, 等. 三峡和葛洲坝两坝间河道本征波特征分析[J]. 水动力学研究与进展(A辑), 2021, 36(1):121-130.
YANG Zhong-yong, QIAN Men-liang, JI Dao-bin, et al. Study of Eigenwave Based on an Analytical Model in Impoundment Reach between Three Gorges Dam and Gezhouba Dam[J]. Chinese Journal of Hydrodynamics, 2021, 36(1):121-130. (in Chinese))
[23]
姚仕明, 王兴奎, 张超, 等. 两坝间河段通航水流条件的三维数值模拟[J]. 水科学进展, 2007, 18(3): 374-378.
YAO Shi-ming, WANG Xing-kui, ZHANG Chao, et al. 3-D Numerical Simulation of Navigable Flow Conditions between Three Gorges Dam and Gezhouba Dam[J]. Advances in Water Science, 2007, 18(3): 374-378. (in Chinese))

基金

国家自然科学基金项目(42477086)
国家自然科学基金项目(U24A20180)
国家自然科学基金项目(42006156)
重庆市住房和城乡建设委员会科技项目(城科字2023第6-14号)
三峡创新发展联合基金项目(2023AFD201)
长江科学院开放研究基金项目(CKWV20221003/KY)
湖北省高校优秀中青年科技创新团队项目(T2021003)
湖北省自然科学基金项目(2022CFB207)

编辑: 黄 玲
PDF(8711 KB)

Accesses

Citation

Detail

段落导航
相关文章

/