长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10): 88-95.DOI: 10.11988/ckyyb.20230770

• 岩土工程 • 上一篇    下一篇

潮流能水轮机单桩基础的海床动力响应

张继生1,2, 赵康1, 陈浩1   

  1. 1.河海大学 海岸灾害及防护教育部重点实验室,南京 210098;
    2.河海大学 港口海岸与近海工程学院,南京 210098
  • 收稿日期:2023-07-17 修回日期:2023-08-04 出版日期:2023-10-01 发布日期:2023-10-13
  • 通讯作者: 赵 康(1998-),男,江苏南京人,硕士研究生,主要从事海床动力响应研究工作。E-mail:201303020054@hhu.edu.cn
  • 作者简介:张继生(1979-),男,福建晋江人,教授,博士,主要从事海洋可再生能源工程研究。E-mail:jszhang@hhu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51879098)

Seabed Dynamic Response of Monopile Foundation for Tidal Stream Turbine

ZHANG Ji-sheng1,2, ZHAO Kang1, CHEN Hao1   

  1. 1. Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210098, China;
    2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
  • Received:2023-07-17 Revised:2023-08-04 Online:2023-10-01 Published:2023-10-13

摘要: 随着潮流能资源的开发利用日益增加,波浪和潮流联合作用下海床动力响应对潮流能水轮机基础的稳定性变得愈发重要。为更深入认识潮流能水轮机周围海床动力特性,建立了波浪-潮流-海床-水轮机间的相互作用数值模型。模型中考虑水轮机叶片的旋转作用,通过海床表面的数据交换实现波流子模型和海床子模型的单向耦合,采用雷诺平均的纳维-斯托克斯(RANS)方程来控制水动力非线性运动,同时采用Biot理论方程描述多孔介质中固体和孔隙流体的相互作用。基于该模型研究了波流作用下潮流能水轮机单桩基础周围土体响应特性,分析了波流作用下土体液化风险。模拟结果表明,水轮机叶片的旋转使桩前波压力增大了75%,桩后波高增大了25%,波浪引起的孔隙水压力增大了24%,yz剪切应力增大了230%,桩后土体液化深度增大了50%。

关键词: 单桩基础, 波流作用, 潮流能水轮机, OpenFOAM, 海床动力响应

Abstract: The dynamic response of seabed soil around tidal energy turbine foundations, under the combined action of waves and tidal currents, has become increasingly crucial with the continuous development and utilization of tidal energy resources. To deepen our understanding of the dynamic characteristics within the seabed near tidal energy turbines, we established a numerical model that considers the interaction between waves, tidal currents, seabed, and turbine foundations. The model incorporates the rotational effect of turbine blades, facilitating one-way coupling between the wave sub-model and the seabed sub-model through data exchange on the seabed surface. The Reynolds-Averaged Navier-Stokes (RANS) equations were employed to control the nonlinear fluid motion, while Biot’s theory equations to describe the interaction between the solid and fluid phases in the porous medium. By using this model, we examined the wave-induced responses of surrounding soil of tidal energy turbine’s monopile foundations, and analyzed the soil liquefaction risks under wave action. Simulation results reveal that the rotation of water turbine blades amplifies the wave pressure in front of the pile by 75%, increases the wave height behind the pile by 25%, induces a 24% increase in pore pressure caused by the waves, elevates the yz shear stress by 230%, and enhances the liquefaction depth of the soil behind the pile by 50%.

Key words: monopile foundation, wave-current action, tidal stream turbine, OpenFOAM, seabed dynamic response

中图分类号: