湘江流域水环境评价模型及驱动因子识别

曹艳敏, 安宏雷, 韩帅

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 51-58.

PDF(7952 KB)
PDF(7952 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (10) : 51-58. DOI: 10.11988/ckyyb.20221496
水环境与水生态

湘江流域水环境评价模型及驱动因子识别

  • 曹艳敏1, 安宏雷2, 韩帅3
作者信息 +

Water Environment Assessment Model and Driving Factors Identification for Xiangjiang River Basin

  • CAO Yan-min1, AN Hong-lei2, HAN Shuai3
Author information +
文章历史 +

摘要

流域涉及范围广、水环境问题复杂,其水环境评价及驱动力分析是流域研究的重点。以湘江流域77个水质监测站实测水质指标为基础,结合聚类分析法和主成分分析法(PCA),建立湘江流域WQImin水环境评价模型,通过Pearson线性相关法对流域进行社会经济驱动因子分析。结果表明:湘江流域WQImin值介于95.2~70.0之间,整体为优—好等级;流域水环境非汛期优于汛期;水环境最优地区为永州及潇水,长株潭地区及衡阳市较差,其主要污染因子为DO、BOD5、CODMn、Cr6+及NH3-N;干流自上游至下游WQImin逐渐降低,其中湘潭区域WQImin最低,为78.65,长沙WQImin有所提升,为81.6;水环境驱动因子长株潭及衡阳地区的为工业污染、农业污染及人口因素,永州为农业污染,娄底及郴州为工业污染;湘江干流主要驱动因子为工业污染、农业污染及上游市的城市污染。研究结果可为流域水环境评价研究提供参考。

Abstract

Watershed involves a wide range of complexities in its water environment issues. Water environment assessment and driving force analysis are crucial aspects of watershed research. In this study, an assessment model, the WQImin, for the water environment in the Xiangjiang River Basin is established by combining cluster analysis and principal component analysis (PCA) based on measured water quality indicators from 77 monitoring stations. The socio-economic driving factors of the basin are also analyzed using the Pearson linear correlation method. Results indicate that the WQImin values in the Xiangjiang River Basin range from 95.2 to 70.0, with an overall rating of excellent-good. The water environment in non-flood season is superior to that in flood season. Areas such as Yongzhou and Xiaoshui exhibit the best water quality, while the Changsha-Zhuzhou-Xiangtan cluster and the city of Hengyang demonstrate poorer conditions. The main pollution factors include dissolved oxygen (DO), biochemical oxygen demand (BOD5), chemical oxygen demand (CODMn), hexavalent chromium (Cr6+), and ammonia nitrogen (NH3-N). Furthermore, the WQImin values progressively decrease from upstream to downstream along the main stream, with the lowest value recorded in the Xiangtan area at 78.65, while the value in Changsha increases to 81.6. The driving factors impacting the water environment vary across different areas. Industrial pollution, agricultural pollution, and population factors influence the water environment in Changsha-Zhuzhou-Xiangtan region and Hengyang, whereas agricultural pollution affects Yongzhou, and industrial pollution influences Loudi and Chenzhou. The primary driving factors for the mainstream of Xiangjiang River include industrial pollution, agricultural pollution, and urban pollution in upstream cities.

关键词

水环境评价 / 驱动因子 / WQImin模型 / 主成分分析法(PCA) / 湘江流域

Key words

water environment assessment / driving factors / WQImin model / principal component analysis / Xiangjiang River Basin

引用本文

导出引用
曹艳敏, 安宏雷, 韩帅. 湘江流域水环境评价模型及驱动因子识别[J]. 长江科学院院报. 2023, 40(10): 51-58 https://doi.org/10.11988/ckyyb.20221496
CAO Yan-min, AN Hong-lei, HAN Shuai. Water Environment Assessment Model and Driving Factors Identification for Xiangjiang River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(10): 51-58 https://doi.org/10.11988/ckyyb.20221496
中图分类号: X171.4   

参考文献

[1] WANG H. Theory of Annual Runoff Evolution Under Natural-Artificial Dual Mode and Case Study of Wuding River Basin on the Middle Yellow River[J]. Science in China Series E,2004,47(8): 51.
[2] 胡 芳,黄慧敏,刘 桢,等. 湘江综合枢纽工程蓄水后湘江长沙段鱼类重金属残留分析与评价[J]. 矿冶工程,2020,40(4): 114-119.
[3] 陈明霞,熊贵耀,张佳鹏,等. 湘江流域水质综合评价及其时空演变分析[J]. 环境工程,2019,37(10): 83-90,104.
[4] 陈咏淑,吴甫成,吕焕哲,等. 近20年来湘江水质变化分析[J]. 长江流域资源与环境,2004,13(5): 508-512.
[5] 周召梅,李 强. 湖南省入河废污水对江河水质的影响分析[J]. 水资源保护,2003,19(3): 44-46,62.
[6] 刘叶叶. 湘江流域水质特征及水生态补偿标准研究[D]. 长沙: 湖南师范大学,2020.
[7] 刘叶叶,毛德华,杨家亮,等. 1990—2016年湘江干流水质变化特征及影响因素分析[J]. 冰川冻土,2018,40(4): 820-827.
[8] 王敦球,武 力,刘慧莹,等. 湘江永州流域水质时空规律及污染源解析[J]. 桂林理工大学学报,2021,41(1): 165-173.
[9] 刘叶叶,毛德华,杨家亮,等. 湘江流域水质特征及水污染经济损失估算[J]. 中国环境科学,2019,39(4): 1471-1477.
[10] 曹艳敏,毛德华,吴 昊,等. 湘江干流水环境质量演变特征及其关键因素定量识别[J]. 长江流域资源与环境,2019,28(5): 1235-1243.
[11] 徐祖信. 我国河流综合水质标识指数评价方法研究[J]. 同济大学学报(自然科学版),2005,33(4): 482-488.
[12] 程卫国,李亚斌,苏 燕,等. 不同赋权方法的综合水质标识指数法对比分析[J]. 灌溉排水学报,2019,38(11): 93-99.
[13] 唐 琦,刘 兵,王 璞,等. 改进WQI在川中丘陵地区典型流域水质评价中的应用: 以琼江流域上游段为例[J]. 环境工程技术学报,2022,12(2): 615-623.
[14] KANNEL P R,LEE S,LEE Y-S,et al. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment[J]. Environmental Monitoring and Assessment,2007,132(1): 93-110.
[15] DE ALMEIDA G S,DE OLIVEIRA I B. Application of the Index WQI-CCME with Data Aggregation Per Monitoring Campaign and Per Section of the River:Case Study—Joanes River,Brazil[J]. Environmental Monitoring and Assessment,2018,190(4): 195.
[16] NONG X,SHAO D,ZHONG H,et al. Evaluation of Water Quality in the South-to-North Water Diversion Project of China Using the Water Quality Index (WQI) Method[J]. Water Research,2020,178: 115781.
[17] CHOI B,CHOI S S. Integrated Hydraulic Modelling,Water Quality Modelling and Habitat Assessment for Sustainable Water Management: A Case Study of the Anyang-Cheon Stream,Korea[J]. Sustainability,2021,13(8): 4330.
[18] 胡莹莹,王义成,周毓彦,等. 基于综合水质指数的白洋淀流域水质评价[J]. 水利水电技术(中英文),2022,53(3): 145-154.
[19] HU Y Y,WANG Y C,ZHOU Y Y,et al. Water Quality Assessment of Baiyangdian Watershed based on a Comprehensive Water Quality Index[J].Water Conservancy and Hydropower Technology (Chinese and English),2022,53(3):145-154.
[20] 杨 列,闫霄珂,刘艳丽,等. 基于WQImin模型的武汉市金银湖水质时空特性[J]. 长江科学院院报,2022,39(4): 49-55,62.
[21] 湖南省水利水电勘测设计研究总院. 湘江流域综合规划[R].长沙:湖南省水利水电勘测设计研究总院,2015.
[22] 朱 琳,王雅南,韩 美,等. 武水河水质时空分布特征及污染成因的解析[J]. 环境科学学报,2018,38(6): 2150-2156.
[23] 吴寿盛. 流域视角下湖南产业与水污染集聚的时空演变与管控策略[D]. 长沙: 湖南大学,2021.
[24] 覃一枝. 湘江流域畜禽养殖企业环境成本评估[D]. 长沙: 湖南农业大学,2018.
[25] 刘俊宇. 湘江流域人类干扰强度变化对生态系统服务的影响及阈值研究[D]. 长沙: 湖南师范大学,2021.
[26] JONNALAGADDA S B,MHERE G. Water Quality of the Odzi River in the Eastern Highlands of Zimbabwe[J]. Water Research,2001,35(10): 2371-2376.

基金

湖南省自然科学基金项目(2021JJ40026);湖南省教育厅科学研究项目(21C0651);益阳市哲学社会科学重大课题(2022YS011)

PDF(7952 KB)

Accesses

Citation

Detail

段落导航
相关文章

/