浮球覆盖下水面能量平衡再建与蒸发模型研究

徐思远, 严新军, 王海涛, 侍克斌

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3) : 22-29.

PDF(6176 KB)
PDF(6176 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (3) : 22-29. DOI: 10.11988/ckyyb.20221405
水资源

浮球覆盖下水面能量平衡再建与蒸发模型研究

  • 徐思远1,2, 严新军1,2, 王海涛1,2, 侍克斌1,2
作者信息 +

Reconstruction of Water Surface Energy Balance and Evaporation Model under Floating Ball Coverage

  • XU Si-yuan1,2, YAN Xin-jun1,2, WANG Hai-tao1,2, SHI Ke-bin1,2
Author information +
文章历史 +

摘要

针对干旱区平原水库蒸发强烈导致水资源利用率低的问题,选用黑色高密度聚乙烯(HDPE)浮球作为干旱区平原水库节水材料。通过理论分析、建模与室外试验三者结合,对完整非冰冻期内浮球覆盖下水面蒸发、水体能量平衡组分变化分布的响应机理进行研究,并在此基础上建立相应的水面蒸发量计算模型。结果显示:相较于自由水面,73%的浮球覆盖率下的整体水面净辐射吸收率减小约12.6%,其月均蒸发所需潜热通量减少了61.8%,约为148.73 W/m2,水体的感热通量和蓄热通量也有较大的变化。通过对彭曼模型的能量项和空气动力项进行修正,建立的覆盖条件下的水面蒸发量计算模型具有较高的精度。

Abstract

To address the issue of low water resource utilization caused by intense evaporation in plain reservoirs in arid regions,we have chosen black high-density polyethylene floating balls as a means to combat evaporation and promote water conservation.This study examines the response mechanism of water surface evaporation and the distribution of water energy balance components under floating ball coverage throughout the non-freezing period using theoretical analysis,modeling,and outdoor experiments.On this basis,we developed a calculation model of water surface evaporation.Our results indicate that,when compared to uncovered water surfaces,the overall net radiation absorption rate decreases by approximately 12.6% under a 73% floating ball coverage.The average monthly latent heat flux required for evaporation decreases by 61.8% to approximately 148.73 W/m2.The sensible heat flux and heat storage flux of water body also experience significant changes.By accounting for modifications in energy and aerodynamic terms,our model for calculating surface evaporation under covered conditions demonstrates high precision.

关键词

浮球 / 节水材料 / 能量平衡 / 蒸发模型 / 水资源利用率

Key words

floating ball / water-saving materials / energy balance / evaporation model / utilization efficiency of water resource

引用本文

导出引用
徐思远, 严新军, 王海涛, 侍克斌. 浮球覆盖下水面能量平衡再建与蒸发模型研究[J]. 长江科学院院报. 2024, 41(3): 22-29 https://doi.org/10.11988/ckyyb.20221405
XU Si-yuan, YAN Xin-jun, WANG Hai-tao, SHI Ke-bin. Reconstruction of Water Surface Energy Balance and Evaporation Model under Floating Ball Coverage[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(3): 22-29 https://doi.org/10.11988/ckyyb.20221405
中图分类号: TV697   

参考文献

[1] 曾 燕,邱新法,刘昌明,等.1960—2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318.(ZENG Yan,QIU Xin-fa,LIU Chang-ming,et al.Changes of Pan Evaporation in China in 1960-2000[J]. Advances in Water Science,2007,18(3):311-318.(in Chinese))
[2] 贺晋云, 张明军, 王 鹏, 等. 新疆气候变化研究进展[J]. 干旱区研究, 2011, 28(3): 499-508.(HE Jin-yun, ZHANG Ming-jun, WANG Peng, et al. New Progress of the Study on Climate Change in Xinjiang[J]. Arid Zone Research, 2011, 28(3): 499-508.(in Chinese))
[3] 侍克斌, 内陆干旱区平原水库节水与周边土壤次生盐渍化防治关键技术研究[R]. 乌鲁木齐:新疆农业大学, 2015.(SHI Ke-bin, Research on Key Technologies of Water Saving and Secondary Soil Salinization Prevention in Inland Arid Plain Reservoir[R]. Urumqi: Xinjiang Agricultural University,2015.(in Chinese))
[4] 姜海波, 唐 凯, 何新林. 抑制干旱区平原水库蒸发试验及蒸发模型研究[J]. 干旱区资源与环境, 2016, 30(1): 119-124.(JIANG Hai-bo, TANG Kai, HE Xin-lin. Experimental Study on Inhibiting Water Surface Evaporation of Reservoir in Arid Region[J]. Journal of Arid Land Resources and Environment, 2016, 30(1): 119-124.(in Chinese))
[5] 韩克武, 侍克斌, 严新军, 等. PE浮球覆盖下干旱区平原水库防蒸发节水效率分析[J]. 应用基础与工程科学学报, 2020, 28(2): 376-385.(HAN Ke-wu, SHI Ke-bin, YAN Xin-jun, et al. Analysis on Water Saving Efficiency of PE Spheres Covering Plain Reservoirs in Arid Area[J]. Journal of Basic Science and Engineering, 2020, 28(2): 376-385.(in Chinese))
[6] RUSKOWITZ J A, SUAREZ F, TYLER S W, et al. Evaporation Suppression and Solar Energy Collection in a Salt-gradient Solar Pond[J]. Solar Energy, 2014, 99: 36-46.
[7] HAGHIGHI E, MADANI K, HOEKSTRA A Y. The Water Footprint of Water Conservation Using Shade Balls in California[J]. Nature Sustainability, 2018, 1: 358-360.
[8] 胡洪浩, 侍克斌, 毛海涛, 等. 水上光伏电站新模式下不同材料节水效益研究[J]. 人民黄河, 2021, 43(1): 72-76, 81.(HU Hong-hao, SHI Ke-bin, MAO Hai-tao, et al. Study on Water Saving Efficiency of Different Materials under the Conditions of New Mode of Water Photovoltaic Power Station[J]. Yellow River, 2021, 43(1): 72-76, 81.(in Chinese))
[9] 石兴鹏, 侍克斌, 韩克武, 等. 干旱区水上太阳能电池板与浮球联合作用对节水效率的影响[J]. 水电能源科学, 2021, 39(9): 63-66, 75.(SHI Xing-peng, SHI Ke-bin, HAN Ke-wu, et al. Combined Effect of Solar Panels and Floating Balls on Water Saving Efficiency in Arid Areas[J]. Water Resources and Power, 2021, 39(9): 63-66, 75.(in Chinese))
[10] HAN K W, SHI K B, YAN X J. Evaporation Loss and Energy Balance of Agricultural Reservoirs Covered with Counterweighted Spheres in Arid Region[J]. Agricultural Water Management, 2020, 238: 106-227.
[11] AMINZADEH M,OR D.Temperature Dynamics during Nonisothermal Evaporation from Drying Porous Surfaces[J]. Water Resources Research, 2013, 49(11): 7339-7349.
[12] AMINZADEH M, LEHMANN P, OR D. Evaporation Suppression and Energy Balance of Water Reservoirs Covered with Self-assembling Floating Elements[J]. Hydrology and Earth System Sciences, 2018, 22(7): 4015-4032.
[13] GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ B, et al. Evaluation of Evaporation Estimation Methods for a Covered Reservoir in a Semi-arid Climate (South-eastern Spain)[J]. Journal of Hydrology, 2012, 458/459: 59-67.
[14] ASMAR B N, ERGENZINGER P. Estimation of Evaporation from the Dead Sea[J]. Hydrological Processes, 1999, 13(17): 2743-2750.
[15] ALI S, GHOSH N C, SINGH R. Evaluating Best Evaporation Estimate Model for Water Surface Evaporation in Semi-arid Region, India[J]. Hydrological Processes, 2008, 22(8): 1093-1106.
[16] GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ B, et al. Energy Balance and Evaporation Loss of an Irrigation Reservoir Equipped with a Suspended Cover in a Semiarid Climate (South-Eastern Spain)[J]. Hydrological Processes, 2011, 25(11): 1694-1703.
[17] ALVAREZ V M, BAILLE A, MOLINA MARTINEZ J M, et al. Efficiency of Shading Materials in Reducing Evaporation from Free Water Surfaces[J]. Agricultural Water Management, 2006, 84(3): 229-239.
[18] SINGH V P, XU C Y. Evaluation and Generalization of 13 Mass-transfer Equations for Determining Free Water Evaporation[J]. Hydrological Processes, 1997, 11(3): 311-323.
[19] MONTEITH J L. Evaporation and the Environment[C]//The State and Movement of Water in Living Organisms: Symposia of the Society for Experimental Biology. Cambridge: Cambridge University Press, 1965: 205-234.
[20] SICLAIR R T. Natural Evaporation from Open Water, Bare Soil and Grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1032): 120-145.
[21] PRIESTLEY C H B, TAYLOR R J. On the Assessment of Surface Heat Flux and Evaporation Using Large-scale Parameters[J]. Monthly Weather Review, 1972, 100(2): 81.
[22] GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ B, et al. Energy Balance and Evaporation Loss of an Irrigation Reservoir Equipped with a Suspended Cover in a Semiarid Climate (South-eastern Spain)[J]. Hydrological Processes, 2011, 25(11): 1694-1703.
[23] HAN K W, SHI K B, YAN X J. Evaporation Loss and Energy Balance of Agricultural Reservoirs Covered with Counterweighted Spheres in Arid Region[J]. Agricultural Water Management, 2020, 238: 106-227.

基金

国家自然科学基金项目(51968071);新疆维吾尔自治区“水利工程”重点学科研究项目(SLXK2019-04)

PDF(6176 KB)

Accesses

Citation

Detail

段落导航
相关文章

/