滇中引水工程地质构造背景与地震地质条件极为复杂。香炉山隧洞全长62.60 km,最大埋深1 450 m,穿越滇西北横断山脉及金沙江与澜沧江两大流域分水岭,跨越多条区域性深大断裂,是滇中引水工程中单洞最长、埋深最大隧洞,也是目前国内在建水利工程中施工难度最大、地质条件最为复杂的大深埋超长隧洞。结合香炉山隧洞复杂地质条件、存在的主要工程地质问题,以及可能产生的地下水环境影响风险,系统地总结了香炉山隧洞勘察研究过程中采用的基于3S技术的地质遥感解译、大地电磁测深、千米级深孔勘探测试、复杂岩溶区大埋深超长隧洞选线、地下水三维渗流场数值模拟等勘察关键技术和研究方法,创新性地研发了千米级深孔地应力测试技术、深部岩体水文地质参数测试技术以及适用于复杂地质条件下大埋深隧洞的超前地质预报关键技术;形成了一套较为系统、全面的大埋深超长隧洞勘察关键技术研究方法,为类似工程勘察研究工作提供了重要参考及借鉴。
Abstract
The Central Yunnan Water Diversion Project features extremely complex geological structure background and seismic geological conditions. With a total length of 62.60 km and a maximum buried depth of 1 450 m, Xianglushan tunnel crosses the Hengduan Mountains in northwest Yunnan, the watershed of Jinsha River and Lancang River, and several regional deep faults. It is the longest single tunnel with the largest buried depth in the Central Yunnan Water Diversion Project and is also the most difficult to construct large, deep and super long tunnel with the most complex geological condition in water conservancy projects under construction in China. In view of the major engineering geological problems and the potential risks of groundwater environmental impact, we systematically summarize the key survey technologies including 3S-based geological remote sensing interpretation, magnetotelluric sounding, kilometer-level deep hole exploration and testing, route selection of large deep-buried and super long tunnels in complex karst areas, and numerical simulation of three-dimensional seepage field of groundwater. We also developed some key technologies of advanced geological prediction applicable for large, deep-buried, and long tunnels in complex geological conditions, kilometer-level deep hole geostress testing technology, as well as deep rock hydrogeological parameter testing technology. Such technologies form a whole set of systematic and comprehensive research methods for investigating large buried and super long tunnels.
关键词
香炉山隧洞 /
大埋深超长隧洞 /
复杂地质条件 /
勘察关键技术 /
超前地质预报关键技术
Key words
Xianglushan tunnel /
super long tunnel with large buried depth /
complex geological conditions /
key technologies of investigation /
key technologies of advanced geological prediction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钮新强,张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J].隧道建设(中英文),2019,39(4):523-536.
[2] 雷 民,许雁超.复杂地质条件下深部钻孔勘探疑难问题处理[J].矿业工程,2009,7(4):10-11.
[3] 司富安,贾国臣,高玉生.水利水电工程深埋长隧洞勘察技术方法[J].中国水利,2010(20):69-71.
[4] 贾国臣,刘康和. 深埋长隧洞勘察技术与思考[J].工程勘察,2006(增刊1):70-74.
[5] 李银泉,陈长生,张海平. 基于GMS数值模型的隧洞施工对地下水环境影响预测研究[J].国土资源导刊,2020(1):40-45.
[6] 宋 嶽,贾国臣.深埋长隧洞主要工程地质问题与勘察[J].工程地质学报,2004(增刊1):218-222.
[7] 周延国,宋红克,吴国红. 基于3S技术的库区岩溶地质研究:以云南新庄水库为例[J].水利规划与设计,2020(12):130-135.
[8] 朱光喜.音频大地电磁法在铁路隧道工程勘察中的应用[J].工程地球物理学报,2009, 6(3):294-298.
[9] 赵会会.物探方法在云南公路深埋长隧道地质勘察中的应用研究[D].昆明:昆明理工大学,2009.
[10]魏岩峻,董 亮,高建华,等.可控源音频大地电磁法及在地质勘探中的应用[J].人民长江,2012,43(3):43-45.
[11]谭远发.长大深埋隧道工程地质综合勘察技术应用研究[J].铁道工程学报,2012(4):24-31.
[12]曹哲明.音频大地电磁法在宜万铁路隧道勘察中的应用效果[J].铁道勘察,2004,30(1):53 -54.
[13]史晓涛.岩溶地区复杂地质条件下铁路线路方案比选[J].铁道勘察,2015(2):65-67.
[14]王旺盛,王家祥,李银泉.滇中引水工程深埋长隧洞勘察关键技术与应用[C]//石伯勋,司富安,蔡耀军,等.水利勘测技术成就与展望.武汉:武汉理工大学出版社,2018:30-39.
[15]史存鹏,周 云,王家祥,等.滇中引水工程香炉山隧洞超前地质预报分段规划研究[C]//刘志明,温续余,尹迅飞.水工隧洞技术应用与发展.北京:中国水利水电出版社,2018:199-203.
基金
云南省重大科技专项计划(202002AF080003);国家大坝安全工程技术研究中心研发计划(CX2020Z29、CX2020Z30)