施工导截流模型阻力不相似会导致试验成果与实际存在较大偏差。采用理论分析及水力计算方法,剖析了长导流隧洞壁面沿程阻力相似的影响因素,揭示了截流模型试验中阻力危机现象,提出了解决阻力不相似问题的途径。研究表明:对于隧洞导流模型受模型比尺制约,模型水流往往处于紊流过渡区,洞壁阻力系数是模型雷诺数的函数,如忽视模型阻力相似问题,会导致模型泄流能力试验值和洞内流态与原型存在较大偏差,可采取加大流量法或通过系统试验拟合阻力系数与模型雷诺数的关系,再对模型试验泄流能力成果予以修正。对于截流模型,块体抗冲稳定相似需满足推阻力系数相似,模型雷诺数Rem只有在3×104~2×105时,绕流阻力系数Cd才为常数,可通过合理选择模型比尺使模型水流进入自模拟区,避免阻力危机。
Abstract
The dissimilar resistance of river diversion and closure models will lead to a large deviation between test results and actual situation. Factors affecting the similar resistance along the wall of long diversion tunnel are analyzed by using theoretical analysis and hydraulic calculation methods. The resistance crisis in the closure model test is revealed,and the approaches of solving the problem of resistance dissimilarity is proposed. In the case of tunnel diversion model,the modeling discharge capacity can be corrected by increasing the flow rate or fitting the relationship between the resistance coefficient and the model Reynolds number through system test because the water flow in tunnel diversion model is often in turbulence transition zone as restricted by the model scale,and the resistance coefficient of tunnel wall is a function of the model Reynolds number. In the case of closure model,the model water flow can be adjusted entering the self-simulation area by reasonably selecting the model scale to avoid resistance crisis because the similarity of thrust resistance coefficient must be satisfied when the blocks are similar in anti-shock stability,and the surrounding flow resistance coefficient is constant only when the model Reynolds number is 3×104~2×105.
关键词
导截流模型 /
长隧洞导流 /
紊流阻力相似 /
推阻力系数相似 /
雷诺数
Key words
river diversion and closure model /
long tunnel diversion /
similar turbulent resistance /
similar thrust resistance coefficient /
Reynolds number
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄国兵.大型水利水电工程施工水力控制及灾害预测关键技术[J].长江科学院院报,2018,35(7):1-8.
[2] 李学海,李 蘅,石教豪.陡坡隧洞明满交替流成因及改善措施[J].长江科学院院报,2013,30(8):40-45.
[3] 李 蘅,李学海,杜泽金.陡坡隧洞不同进口形式的水力特性分析[J].长江科学院院报,2014,31(1):38-41.
[4] 崔金鹏,李 昊,郭鸿俊.巴基斯坦卡洛特水电站软岩导流隧洞设计与施工[J].水利水电快报,2020,41(3):42-46.
[5] 翁永红,饶志文,李勤军,等.乌东德水电站导流规划与设计[J].人民长江,2014,45(20):64-67,84.
[6] 董曾南.水力学[M].4版.北京:高等教育出版社,1995:316-322.
[7] 左东启.模型试验的理论和方法[M].北京:水利水电出版社,1984.
[8] SL/T 163—2019,水利水电工程施工导流和截流模型试验规程[S].北京:中国水利水电出版社,2019.
[9] 夏毓常,张黎明.水工水力学原型观测与模型试验[M].北京:中国电力出版社,1999:41-53.
[10] 李学海.深厚覆盖层河床截流若干关键技术问题研究[D].武汉:武汉大学,2010.
[11] 陈惠泉.输水道出口段的压力分布[J].水利学报,1958(3):3-37
[12] 杨 庆,戴光清,向柏宇,等.水工导流隧洞模型试验中糙率不相似问题的研究[J].四川大学学报(工程科学版),2002(4):42-45.
[13] 李 江,王 健.山口水电站导流洞设计糙率选择与过流能力分析[J].西北水电,2015(6):35-39.
[14] 刘珊燕,刘力中,车清权.瀑布沟水电站宽戗堤截流水工模型试验及应用[J].人民长江,2010,41(2):25-27.
[15] 陈 烽,马辉文,李 钊.汉江碾盘山水利枢纽一期截流设计与施工技术[J].水利建设与管理,2020,40(1):3-11.
基金
国家自然科学基金面上项目(51279014,51879013)