针对超大型基坑降水设计中采用的部分悬挂、部分落底式止水帷幕,利用数值模拟对比分析了不同落底率Rc下深基坑降水的地下水控制效果及其对邻近地铁隧道的影响。研究结果表明:相同落底率Rc下,随着悬挂止水帷幕的插入比L/M的增大,降水对周边环境的影响逐渐降低,存在明显转折点,可根据承压水位降深变化曲线选择相对经济合理的插入比范围;止水帷幕中的悬挂帷幕部分插入比L/M对基坑单位面积抽水量q的影响较小,而落底率Rc对q的影响更为显著,且落底率Rc在0~80%范围内时,Rc与q具有较好的线性相关关系。通过计算结果与现场监测数据对比分析,落底式帷幕一侧的坑内外水头差要明显大于悬挂式帷幕一侧的坑内外水头差,故部分落底式止水帷幕也可有效阻隔环境敏感一侧的地下水渗流;根据不同落底率Rc下地铁隧道的变形计算结果,可以得到满足变形要求的最低落底率Rc。对类似基坑工程的降水及止水帷幕设计,可根据周边环境的敏感程度灵活使用部分落底式止水帷幕。
Abstract
Numerical simulation is employed to analyze the groundwater control effect of super-large deep foundation pit dewatering using partially suspended impervious curtains and partially closed impervious curtains. The influence of different rates of closed impervious curtain (Rc) on the dewatering process and its impact on adjacent subway tunnels are investigated. The findings reveal a gradual decrease in the influence of dewatering on the surroundings at a given Rc as the insertion ratio (L/M) of the suspended impervious curtain increases, with a distinct turning point. Therefore, an economical and reasonable insertion ratio can be determined based on the descending depth variations of the pressure water head. L/M exhibits minimal influence on the water pumping capacity (q) per unit area. In contrast, Rc significantly affects q, showing a good linear correlation when Rc ranges from 0% to 80%. A comparison between calculated results and field monitoring data indicates a notable difference in water head between the inside and outside of a foundation pit, favoring the closed impervious curtain side over the suspended impervious curtain side. Consequently, partially closed impervious curtains prove effective in controlling groundwater seepage in sensitive surrounding areas. Furthermore, deformation calculation results of subway tunnels under different values of Rc could help determine the minimum Rc required to meet deformation requirements. Therefore, partially closed impervious curtains can be employed flexibly in the impervious curtain design for large foundation pits depending on the sensitivity of the surroundings.
关键词
部分落底式止水帷幕 /
落底率 /
基坑降水 /
地下水渗流
Key words
partially-closed impervious curtain /
ratio of closed impervious curtain /
foundation pit dewatering /
seepage of groundwater
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯晓腊, 李栋广. 落底式止水帷幕条件下基坑涌漏量计算[J]. 水文地质工程地质, 2013, 40(5): 16-21.
[2] 吕斌泉, 冯晓腊, 蔡娇娇, 等. 落底式止水帷幕条件下基坑涌水量计算研究[J]. 岩土工程技术, 2020, 34(1): 18-23.
[3] 徐杨青, 刘国锋, 盛永清. 深基坑嵌岩地下连续墙隔渗效果分析与评价方法研究[J]. 岩土力学, 2013, 34(10): 2905-2910.
[4] 高 旭,郭建波,晏鄂川.考虑止水帷幕的深基坑降水预测解析计算[J]. 岩土力学,2018,39(4):1431-1439.
[5] 张钦喜, 晁 哲, 张雪冬. 悬挂式帷幕基坑涌水量计算及插入深度影响效应研究[J]. 岩土工程技术, 2018, 32(3): 109-114.
[6] 李 瑛, 陈 东, 刘兴旺, 等. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832, 862.
[7] 李光明, 李明生. 悬挂式止水帷幕基坑降水控制措施研究[J]. 地下空间与工程学报, 2020, 16(3): 921-932.
[8] 汤光明, 王建平, 张紫艳, 等. 悬挂式止水帷幕止水作用的数值分析[J]. 建筑技术开发, 2011, 38(7): 20-22, 32.
[9] 袁 斌, 武永霞, 廖少明, 等. 基于数值模拟的富水砂砾地层深基坑降水方案优化[J]. 工程勘察, 2017, 45(1): 34-39.
[10] 陆建生. 悬挂式帷幕基坑地下水控制中的尺度效应[J]. 工程勘察, 2015, 43(1): 51-58.
[11] 郑 刚, 邓 旭, 刘庆晨. 承压含水层减压降水对既有盾构隧道影响研究[J]. 岩土力学, 2015, 36(1): 178-188.
[12] 陈凌铜, 朱 丹, 杨 超, 等. 隔水帷幕对深基坑降水开挖变形控制的影响[J]. 土木与环境工程学报(中英文), 2021, 43(4): 24-32.
[13] 李方明, 陈国兴. 江漫滩悬挂式止水帷幕基坑地表沉降变形研究[J]. 隧道建设(中英文), 2018, 38(1): 33-40.
[14] 邱明明,杨果林,申权,等. 地下连续墙与止水帷幕共同作用下富水砂层深基坑变形性状[J]. 长江科学院院报, 2020, 37(11): 81-88,95.
[15] 郑 刚, 杜一鸣, 刁 钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612.
[16] BRINKGREVE R B J, BROERE W. PLAXIS Material Models Manual[M]. Netherlands: PLAXIS B.V., 2006.
[17] 王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283-2290.
[18] HARDIN B O, BLACK W L. Closure to “Vibration Modulus of Normally Consolidated Clay”[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(6): 1531-1537.
[19] CJJ/T 202—2013,城市轨道交通结构安全保护技术规范[S]. 北京: 中国建筑工业出版社, 2014.
[20] GB 50911—2013,城市轨道交通工程监测技术规范[S]. 北京: 中国建筑工业出版社, 2014.
基金
国家自然科学基金资助项目(11802215)